Genetic diversity of sessile oak populations in the Czech Republic

Dvořák J., Korecký J., Faltinová Z., Zádrapová D. (2022): Genetic diversity of sessile oak populations in the Czech Republic. J. For. Sci., 68: 8–18.

download PDF

The sessile oak is a broadleaved tree species of great ecological and silvicultural importance. Oaks are the second most widespread deciduous tree species in the Czech Republic, and ongoing climate change negatively affects the abundant and often monocultural Norway spruce. Therefore, a proportional increase of more resilient tree species such as sessile oak has emerged. This study aimed to depict population genetic diversity when analysing 272 individuals from 10 subpopulations selected across the Czech Republic. Targeted populations were chosen based on the minimal expected human impact on the stand (presumably autochthonous stands). All individuals were genotyped using 18 polymorphic microsatellite markers (SSRs) assembled into two amplification multiplexes. The high discriminatory power of SSR markers was tested and confirmed by the probability of identity analysis. The genetic differentiation of the subpopulations was low yet significant, quantified by Wright’s F-statistics within the range from 0.012 to 0.029. Based on discriminant analysis of principal components (DAPC), we detected two populations with geographic genetic correlation (the 15th meridian east being a north-south boundary line) and one with a distinct genetic pattern. We assume that the population might previously be established from seed sources outside the Czech Republic. Moreover, to some extent, our findings advocate the legitimacy of the legislative rules for forest reproductive material (FRM) transfer.

Abdul-Muneer P.M. (2014): Application of microsatellite markers in conservation genetics and fisheries management: Recent advances in population structure analysis and conservation strategies. Genetics Research International, 14: 691759.
Alberto F., Niort J., Derory J., Lepais O., Vitalis R., Galop D., Kremer A. (2010): Population differentiation of sessile oak at the altitudinal front of migration in the French Pyrenees. Molecular Ecology, 19: 2626–2639.
Aldrich P., Michler C.H., Sun W., Romero-Severson J. (2002): Microsatellite markers for northern red oak (Fagaceae: Quercus rubra). Molecular Ecology Notes, 2: 472–474.
Barreneche T., Bodenes C., Lexer C., Trontin J.-F., Fluch S., Streiff R., Plomion C., Roussel G., Steinkellner H., Burg K., Favre J.-M., Glössl J., Kremer A. (1998): A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme and 5S rDNA markers. Theoretical and Applied Genetics, 97: 1090–1103.
Bodénès C., Labbé T., Pradère S., Kremer A. (1997): General vs. local differentiation between two closely related white oak species. Molecular Ecology, 6: 713–724.
Bruschi P., Vendramin G.G., Bussotti F., Grossoni P. (2000): Morphological and molecular differentiation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. (Fagaceae) in northern and central Italy. Annals of Botany, 85: 325–333.
Bruschi P., Vendramin G.G., Bussotti F., Grossoni P. (2003): Morphological and molecular diversity among Italian populations of Quercus petraea (Fagaceae). Annals of Botany, 91: 707–716.
Coart E., Lamote V., De Loose M., Van Bockstaele E., Lootens P., Roldán-Ruiz I. (2002): AFLP markers demonstrate local genetic differentiation between two indigenous oak species [Quercus robur L. and Quercus petraea (Matt.) Liebl.] in Flemish populations. Theoretical and Applied Genetics, 105: 431–439.
Dostálek J., Frantík T., Lukášová M. (2011): Genetic differences within natural and planted stands of Quercus petraea. Central European Journal of Biology, 6: 597–605.
Dow B.D., Ashley M.V. (1996): Microsatellite analysis of seed dispersal and parentage of saplings in bur oak, Quercus macrocarpa. Molecular Ecology, 5: 615–627.
Dumolin-Lapègue S., Demesure B., Fineschi S., Le Come V., Petit R.J. (1997): Phylogeographic structure of white oaks throughout the european continent. Genetics, 146: 1475–1487.
Dupouey J., Badeau V. (1993): Morphological variability of oaks (Quercus robur L., Quercus petraea (Matt) Liebl., Quercus pubescens Willd) in northeastern France: Preliminary results. Annals of Forest Science, 50: 35–40.
Durand J., Bodénès C., Chancerel E., Frigerio J., Vendramin G., Sebastiani F., Buonamici A., Gailing O., Koelewijn H., Villani F., Mattioni C., Cherubini M., Goicoechea P., Herrán A., Ikaran Z., Cabané C., Ueno S., Alberto F., Dumoulin P., Guichoux E., de Daruvar A., Kremer A., Plomion C. (2010): A fast and cost-effective approach to develop and map EST-SSR markers: Oak as a case study. BMC Genomics, 11: 570.
Eaton E., Caudullo G., Oliveira S., de Rigo D. (2016): Quercus robur and Quercus petraea in Europe: Distribution, habitat, usage and threats. In: San-Miguel-Ayanz J., de Rigo D., Caudullo G., Houston Durrant T., Mauri A. (eds): European Atlas of Forest Tree Species. Luxembourg, European Commission: 160–163.
Finkeldey R. (2001): Genetic variation of oaks (Quercus spp.) in Switzerland. 2. Genetic structrues in pure and mixed forests of pedunculate oak (Q. robur L.) and sessile oak (Q. petraea (Matt.) Liebl.). Silvae Genetica, 50: 22–30.
Gömöry D.,Yakovlev I., Zhelev P., Jedináková J., Paule L. (2001): Genetic differentiation of oak populations within the Quercus robur/Quercus petraea complex in central and eastern Europe. Heredity, 86: 557–563.
Gugerli F., Walser J.-C., Dounavi K., Holderegger R., Finkeldey R. (2007): Coincidence of small-scale spatial discontinuities in leaf morphology and nuclear microsatellite variation of Quercus petraea and Q. robur in a mixed forest. Annals of Botany, 99: 713–722.
Guichoux E., Lagache L., Wagner S., Léger P., Petit R.J. (2011): Two highly validated multiplexes (12-plex and 8-plex) for species delimitation and parentage analysis in oaks (Quercus spp.). Molecular Ecology Resources, 11: 578–585.
Hedrick P.W. (2014): Conservation genetics and the persistence and translocation of small populations: Bighorn sheep populations as examples. Animal Conservation, 17: 106–114.
Jansen S., Geburek T. (2016): Historic translocations of European larch (Larix decidua Mill.) genetic resources across Europe – A review from the 17th until the mid-20th century. Forest Ecology and Management, 379: 114–123.
Jiménez P., Agúndez D., Alía R., Gil L. (1999): Genetic variation in central and marginal populations of Quercus suber L.. Silvae Genetica, 48: 278–283.
Jombart T. (2008): adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24: 1403–1405.
Jombart T., Devillard S., Balloux F. (2010): Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genetics, 11: 94.
Kalinowski S.T., Taper M.L. (2006): Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conservation Genetics, 7: 991–995.
Kalinowski S.T., Taper M.L., Marshall T.C. (2007): Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16: 1099–1106.
Kampfer S., Lexer C., Glossl J., Steinkellner H. (1998): Brief report Characterization of (GA), microsatellite loci from Quercus robur. Hereditas, 129: 183–186.
Kleinschmit J.R.G., Bacilieri R., Kremer A., Roloff A. (1995): Comparison of morphological and genetic traits of pedunculate oak (Q. robur L.) and sessile oak (Q. petrea (Matt.) Liebl.). Silvae Genetica, 44: 256–269.
Kohler M., Pyttel P., Kuehne C., Modrow T., Bauhus J. (2020): On the knowns and unknowns of natural regeneration of silviculturally managed sessile oak (Quercus petraea (Matt.) Liebl.) forests – A literature review. Annals of Forest Science, 77: 101.
Kremer A., Zanetto A. (1997): Geographical structure of gene diversity in Quercus petraea (Matt.) Liebl. II: Multilocus patterns of variation. Heredity, 78: 476–489.
Kremer A., Dupouey J.L., Deans J.D., Cottrell J., Csaikl U., Finkeldey R., Espinel S., Jensen J., Kleinschmit J., Van Dam B., Ducousso A., Forrest I., Lopez De Heredia U., Lowe A.J., Tutkova M., Munro R.C., Steinhoff S., Badeau V. (2002): Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands. Annals of Forest Sciences, 59: 777–787.
Le Corre V., Roussel G., Zanetto A., Kremer A. (1998): Geographical structure of gene diversity in Quercus petraea (Matt.) Liebl. III. Patterns of variation identified by geostatistical analyses. Heredity, 80: 464–473.
Le Corre V., Dumolin-Lapègue S., Kremer A. (1997): Genetic variation at allozyme and RAPD loci in sessile oak Quercus petraea (Matt.) Liebl.: The role of history and geography. Molecular Ecology, 6: 519–529.
Mariette S., Cottrell J., Csaikl U.M., Goikoechea P., Konig A., Lowe A.J., Van Dam B.C., Barreneche T., Bodénés C., Streiff R., Burg K., Groppe K., Munro R.C., Tabbener H., Kremer A. (2002): Comparison of levels of genetic diversity detected with AFLP and microsatellite markers within and among mixed Q. petraea (Matt.) Liebl. and Q. robur L. stands. Silvae Genetica, 51: 72–79.
Marwal A., Gaur R.K. (2013): Molecular markers: Tool for genetic analysis. In: Verma A.S., Singh A. (eds): Animal Biotechnology: Models in Discovery and Translation. Amsterdam, Academic Press: 353–372.
MZe (Ministerstvo zemědělství České republiky) (2019): Zpráva o stavu lesa a lesního hospodářství České republiky v roce 2018. Prague, Ministerstvo zemědělství České republiky: 111. (in Czech).
Muir G., Lowe A.J., Fleming C.C., Vogl C. (2004): High nuclear genetic diversity, high levels of outcrossing and low differentiation among remnant populations of Quercus petraea at the margin of its range in Ireland. Annals of Botany, 93: 691–697.
Novotný P., Fulín M., Čáp J,. Cvrčková H., Máchová P., Trčková O., Buriánek V., Dostál J., Frýdl J. (2016): Genetická charakterizace významných regionálních populací dubu zimního v České republice. Strnady, Výzkumný ústav lesního hospodářství a myslivosti, v.v.i.: 36. (in Czech)
Peakall R., Smouse P.E. (2012): GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Molecular Ecology Notes, 6: 288–295.
Petit R.J., Brewer S., Bordács S., Burg K., Cheddadi R., Coart E., Cottrell J., Csaikl U.M., van Dam B., Deans J.D., Espinel S., Fineschi S., Finkeldey R., Glaz I., Goicoechea P.G., Svejgaard Jensen J., König A.O., Lowe A.J., Flemming Madsen S., Mátyás G., Munro R.C., Popescu F., Slade D., Tabbener H., de Vries S.G.M., Ziegenhagen B., de Beaulieu J.L., Kremer A. (2002): Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecology and Management, 156: 49–74.
Praciak A. (2013): CABI Encyclopedia of Forest Trees. Boston, CABI: 523.
Savill P. (2013): The Silviculture of Trees Used in British Forestry. 2nd Ed. Wallingford, CAB International: 173–185.
Siegismund H.R., Jensen J.S. (2001): Intrapopulation and interpopulation genetic variation of Quercus in Denmark. Scandinavian Journal of Forest Research, 16: 103–116.
Smouse P.E., Long J.C., Sokal R.R. (1986): Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Systematic Zoology, 35: 627–632.
Sokal R.R., Michener C.D. (1958): A Statistical Method for Evaluating Systematic Relationships. The University of Kansas Science Bulletin, 38: 1409–1438.
Steinkellner H., Lexer C., Turetschek E., Glössl J. (1997): Conservation of (GA) n microsatellite loci between Quercus species. Molecular Ecology, 6: 1189–1194.
Streiff R., Labbe T., Bacilieri R., Steinkellner H., Glössl J., Kremer A. (1998): Within-population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Molecular Ecology, 7: 317–328.
Timbal J., Aussenac G. (1996): An overview of ecology and silviculture of indigenous oaks in France. Annales des Sciences Forestieres, 53: 649–661.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti