Multivariate analysis for assessment of the tree populations based on dendrometric data with an example of similarity among Norway spruce subpopulationsějka K. (2017): Multivariate analysis for assessment of the tree populations based on dendrometric data with an example of similarity among Norway spruce subpopulations. J. For. Sci., 63: 449-456.
download PDF
The new method for evaluation of tree populations presented here is based on a correlation analysis within a set of dendrometric variables. The correlation analysis is carried out for each population separately. The method evaluates differences between resulting correlation matrices. These distances can be used by hierarchical cluster analysis (unweighted pair-group average) or by ordination analysis (non-metric multidimensional scaling – NMS). Test data were obtained in 10 research plots in the area of Medvědí Mt., Šumava National Park. Plots are located in Norway spruce [Picea abies (Linnaeus) H. Karsten] climax forests. The results enable ecological interpretation of both classification and NMS. The populations (subpopulations) differ in their origin (spontaneous succession or partial planting) and environmental conditions (extreme environment near the mountain summit versus water-logged soils). These differences were reflected in results of the classification and ordination of the spruce (sub)populations.
Anděl J. (1985): Matematická statistika. Prague, SNTL/ALFA: 346.
Bartelink HH (1997): Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L). Annales des Sciences Forestières, 54, 39-50
Bartelink H. H. (1998): A model of dry matter partitioning in trees. Tree Physiology, 18, 91-101
Bates D.M., Watts D.G. (1980): Relative curvature measures of nonlinearity. Journal of Royal Statistical Society, 42: 1–16.
Bednařík J., Matějka K. (2011): Ekosystémy vzniklé sekundární sukcesí Picea abies v oblasti Medvědí hory (Šumava). Available at (accessed Aug 22, 2017).
Bednařík J., Matějka K. (2014): Struktura porostů Picea abies (L.) Karst. ovlivněných antropogenními disturbancemi v oblasti Medvědí hory (NP Šumava). Zprávy lesnického výzkumu, 59: 18–27.
Bednařík J., Čada V., Matějka K. (2014): Forest succession after a major anthropogenic disturbance: A case study of the Jewish Forest in the Bohemian Forest, Czech Republic. Journal of Forest Science, 60: 336–348.
von Bertalanffy Ludwig (1957): Quantitative Laws in Metabolism and Growth. The Quarterly Review of Biology, 32, 217-231
Blujdea V.N.B., Pilli R., Dutca I., Ciuvat L., Abrudan I.V. (2012): Allometric biomass equations for young broadleaved trees in plantations in Romania. Forest Ecology and Management, 264, 172-184
Budzáková M., Hodálová I., Mereďa P., Somlyay L., Bisbing S.M., Šibík J. (2014): Karyological, morphological and ecological differentiation of Sesleria caerulea and S. tatrae in the Western Carpathians and adjacent regions. Preslia, 86: 245–277.
Buford M.A. (1986): Height-diameter relationship at age 15 in loblolly pine seed sources. Forest Science, 32: 812–818.
Cattell R.B. (1952): Factor Analysis: An Introduction and Manual for the Psychologist and Social Scientist. New York, Harper: 462.
Černý Martin (1990): Biomass of picea abies (L.) Karst. in midwestern bohemia. Scandinavian Journal of Forest Research, 5, 83-95
Csiky J., Mesterházy A., Szalontai B., Oláh E.P. (2010): A morphological study of Ceratophyllum tanaiticum, a species new to the flora of Hungary. Preslia, 82: 247–259.
Curtis R.O. (1967): Height-diameter and height-diameter-age equations for second growth Douglas fir. Forest Science, 13: 365–375.
Dimitris Z., Petteri M., Raisa M., Maurizio M. (2005): Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs, 4: 1–63.
Fralish J.S. (1988): Diameter-height-biomass relationships for Quercus and Carya in Posen Woods Nature Reserve. Transactions of the Illinois State Academy of Science, 81: 31–38.
Gugerli F., Walser J.-C., Dounavi K., Holderegger R., Finkeldey R. (2006): Coincidence of Small-scale Spatial Discontinuities in Leaf Morphology and Nuclear Microsatellite Variation of Quercus petraea and Q. robur in a Mixed Forest. Annals of Botany, 99, 713-722
Henry M, Bombelli A, Trotta C, Alessandrini A, Birigazzi L, Sola G, Vieilledent G, Santenoise P, Longuetaud F, Valentini R, Picard N, Saint-André L (2013): GlobAllomeTree: international platform for tree allometric equations to support volume, biomass and carbon assessment. iForest - Biogeosciences and Forestry, 6, 326-330
Huang Shongming, Price Daryl, J. Titus Stephen (2000): Development of ecoregion-based height–diameter models for white spruce in boreal forests. Forest Ecology and Management, 129, 125-141
HUXLEY J. S., TEISSIER G. (1936): Terminology of Relative Growth. Nature, 137, 780-781
Jenkins J.C., Chojnacky D.C., Heath L.S., Birdsey R.A. (2003): Comprehensive Database of Diameter-based Biomass Re-gressions for North American Tree Species. General Technical Report NE-319. Newtown Square, USDA Forest Service, Northeastern Research Station: 45.
Kabátová K., Vít P., Suda J. (2014): Species boundaries and hybridization in central-European Nymphaea species inferred from genome size and morphometric data. Preslia, 86: 131–154.
Koutecký P., Štěpánek J., Baďurová T. (2012): Differentiation between diploid and tetraploid Centaurea phrygia: Mating barriers, morphology and geographic distribution. Preslia, 84: 1–32.
Legendre P., Legendre L. (2012): Numerical Ecology. 3rd Ed. Amsterdam, Elsevier: 990.
Lepší M., Lepší P., Koutecký P., Bílá J., Vít P. (2015): Taxonomic revision of Sorbus subgenus Aria occurring in the Czech Republic. Preslia, 87: 109–162.
Letz D.R., Dančák M., Danihelka J., Šarhanová P. (2012): Taxonomy and distribution of Cerastium pumilum and C. gluti-nosum in Central Europe. Preslia, 84: 33–69.
Marvan P., Hindák F. (1989): Morphologische Variabilität von Centronella reicheltii (Bacillariophyceae) aus der Westslowakei. Preslia, 61: 1–14.
Matějka K. (2017): Nápověda k programu DBreleve. Databáze fytocenologických snímků, verze 2.5. Available at (accessed Aug 22, 2017).
McCune B., Grace J.B. (2002): Analysis of Ecological Communities. Gleneden Beach, MjM Software Design: 300.
Meloun M., Militký J., Hill M. (2012): Statistická analýza vícerozměrných dat v příkladech. Prague, Academia: 750.
Meyer H.A. (1940): A mathematical expression for height curves. Journal of Forestry, 38: 415–420.
Näslund M. (1936): Skogsforsö ksastaltens gallringsforsök i tallskog. Meddelanden från Statens Skogsförsöksanstalt, 29: 1–169.
Nei M. (1978): Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89: 583–590.
Olšavská K., Šingliarová B., Kochjarová J., Labdíiková Z., Škodová I., Hegedüšová K., Janišová M. (2015): Exploring patterns of variation within the central-European Tephroseris longifolia agg.: Karyological and morphological study. Preslia, 87: 163–194.
Osawa Akira, Allen Robert B. (1993): Allometric Theory Explains Self-Thinning Relationships of Mountain Beech and Red Pine. Ecology, 74, 1020-1032
Pretzsch H. (2009): Forest Dynamics, Growth and Yield. Berlin, Heidelberg, Springer-Verlag: 664.
Robinson A.P., Hamann J.D. (2011): Forest Analytics with R. An Introduction. New York, Springer-Verlag: 339.
Somogyi Z, Teobaldelli M, Federici S, Matteucci G, Pagliari V, Grassi G, Seufert G (2008): Allometric biomass and carbon factors database. iForest - Biogeosciences and Forestry, 1, 107-113
StatSoft, Inc. (2013): Electronic statistics textbook. Available at
Staudhammer Christie, LeMay Valerie (2000): Height prediction equations using diameter and stand density measures. The Forestry Chronicle, 76, 303-309
SUMIDA A., ITO H., ISAGI Y. (1997): Trade-off between height growth and stem diameter growth for an evergreen Oak, Quercus glauca, in a mixed hardwood forest. Functional Ecology, 11, 300-309
van Laar A., Akça A. (2007): Forest Mensuration. Dordrecht, Springer-Verlag: 383.
West P.W. (2009): Tree and Forest Measurement. 2nd Ed. Berlin, Heidelberg, Springer-Verlag: 191.
Wirth C., Schumacher J., Schulze E.-D. (2004): Generic biomass functions for Norway spruce in Central Europe--a meta-analysis approach toward prediction and uncertainty estimation. Tree Physiology, 24, 121-139
Wykoff W.R., Crookston N.L., Stage A.R. (1982): User’s Guide to the Stand Prognosis Model. General Technical Report INT-133. Ogden, USDA Forest Service, Intermountain Forest and Range Experiment Station: 231.
download PDF

© 2019 Czech Academy of Agricultural Sciences