Dry Biomass Estimation of Hedge Banks: Allometric Equation vs. Structure from Motion via Unmanned Aerial Vehicle

https://doi.org/10.17221/152/2017-JFSCitation:Lingner S., Thiessen E., Müller K., Hartung E. (2018): Dry Biomass Estimation of Hedge Banks: Allometric Equation vs. Structure from Motion via Unmanned Aerial Vehicle. J. For. Sci., 64: 149-156.
download PDF

The wood yield of hedge banks is very heterogeneous and hard to estimate in advance. The aim of the present study was to estimate the dry biomass of hedge banks shortly before harvesting using two different non-destructive approaches: (i) allometric equation based on DBH, (ii) volume calculations based on Structure from Motion; and to compare these estimations to the results of the (invasive) reference method: weighing after harvesting. Study objects were three different 100 m hedge banks in Schleswig-Holstein, Germany that were divided into 10 m segments (n = 30). These segments were harvested and weighed separately to calculate dry biomass. The allometric equation yielded a relative root mean square error (rRMSE) of 32.4%. The Structure from Motion (SfM) volume models yielded an rRMSE of 30.0%. These results indicate that SfM approaches are comparably precise to allometric equations for dry mass estimations of hedge banks. SfM approaches are less time consuming but have higher technical requirements.

References:
Annighöfer Peter, Ameztegui Aitor, Ammer Christian, Balandier Philippe, Bartsch Norbert, Bolte Andreas, Coll Lluís, Collet Catherine, Ewald Jörg, Frischbier Nico, Gebereyesus Tsegay, Haase Josephine, Hamm Tobias, Hirschfelder Bastian, Huth Franka, Kändler Gerald, Kahl Anja, Kawaletz Heike, Kuehne Christian, Lacointe André, Lin Na, Löf Magnus, Malagoli Philippe, Marquier André, Müller Sandra, Promberger Susanne, Provendier Damien, Röhle Heinz, Sathornkich Jate, Schall Peter, Scherer-Lorenzen Michael, Schröder Jens, Seele Carolin, Weidig Johannes, Wirth Christian, Wolf Heino, Wollmerstädt Jörg, Mund Martina (2016): Species-specific and generic biomass equations for seedlings and saplings of European tree species. European Journal of Forest Research, 135, 313-329  https://doi.org/10.1007/s10342-016-0937-z
 
Dandois Jonathan P., Ellis Erle C. (2010): Remote Sensing of Vegetation Structure Using Computer Vision. Remote Sensing, 2, 1157-1176  https://doi.org/10.3390/rs2041157
 
Díaz-Varela Ramón, de la Rosa Raúl, León Lorenzo, Zarco-Tejada Pablo (2015): High-Resolution Airborne UAV Imagery to Assess Olive Tree Crown Parameters Using 3D Photo Reconstruction: Application in Breeding Trials. Remote Sensing, 7, 4213-4232  https://doi.org/10.3390/rs70404213
 
Dittmann S., Thiessen E., Hartung E. (2017): Applicability of different non-invasive methods for tree mass estimation: A review. Forest Ecology and Management, 398, 208-215  https://doi.org/10.1016/j.foreco.2017.05.013
 
Eigner J. (1982): Bewertung von Knicks in Schleswig-Holstein. In: Hecken und Flurgehölze – Structur, Funktion und Bewertung. Laufener Seminarbeiträge 5/82, Bayreuth, June 17–19, 1982: 110–117.
 
Fritz A., Kattenborn T., Koch B. (2013): UAV-BASED PHOTOGRAMMETRIC POINT CLOUDS – TREE STEM MAPPING IN OPEN STANDS IN COMPARISON TO TERRESTRIAL LASER SCANNER POINT CLOUDS. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W2, 141-146  https://doi.org/10.5194/isprsarchives-XL-1-W2-141-2013
 
Hyde Peter, Nelson Ross, Kimes Dan, Levine Elissa (2007): Exploring LiDAR–RaDAR synergy—predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR. Remote Sensing of Environment, 106, 28-38  https://doi.org/10.1016/j.rse.2006.07.017
 
Isensee E., Stübig D.K., Lubkowitz C. (2000): Bergung und Aufbereitung von Knick- und Schwachholz. Landtechnik – Agricultural Engineering, 55: 346–347.
 
Mantau U. (2012): Holzrohstoffbilanz Deutschland: Entwicklungen und Szenarien des Holzaufkommens und der Holz-verwendung 1987 bis 2015. Hamburg, Universität Hamburg: 65.
 
Marshall E. J. P. (2004): Agricultural Landscapes. Journal of Crop Improvement, 12, 365-404  https://doi.org/10.1300/J411v12n01_05
 
Marshall E.J.P., Moonen A.C. (2002): Field margins in northern Europe: Their functions and interactions with agriculture. Agriculture, Ecosystems & Environment, 89: 5–21.
 
Miller J., Morgenroth J., Gomez C. (2015): 3D modelling of individual trees using a handheld camera: Accuracy of height, diameter and volume estimates. Urban Forestry & Urban Greening, 14: 932–940.
 
Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein (2017): Durchführungsbestimmungen zum Knickschutz. Kiel, Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein: 19.
 
Mitchard E. T. A., Saatchi S. S., Woodhouse I. H., Nangendo G., Ribeiro N. S., Williams M., Ryan C. M., Lewis S. L., Feldpausch T. R., Meir P. (2009): Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes. Geophysical Research Letters, 36, -  https://doi.org/10.1029/2009GL040692
 
Ploton Pierre, Pélissier Raphaël, Proisy Christophe, Flavenot Théo, Barbier Nicolas, Rai S. N., Couteron Pierre (2012): Assessing aboveground tropical forest biomass using Google Earth canopy images. Ecological Applications, 22, 993-1003  https://doi.org/10.1890/11-1606.1
 
Popescu Sorin C., Zhao Kaiguang, Neuenschwander Amy, Lin Chinsu (2011): Satellite lidar vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level. Remote Sensing of Environment, 115, 2786-2797  https://doi.org/10.1016/j.rse.2011.01.026
 
Roßkamp T. (2001): Zur Bestandssituation der Hecken in Niedersachsen und deren Auswirkung auf die Vogelwelt, dargestellt an traditionellen Wallheckenlandschaften im nordwestlichen Niedersachsen. Seevögel – Zeitschrift Verein Jordsand, 22: 49–53.
 
Sader Steven A., Waide Robert B., Lawrence William T., Joyce Armond T. (1989): Tropical forest biomass and successional age class relationships to a vegetation index derived from landsat TM data. Remote Sensing of Environment, 28, 143-198  https://doi.org/10.1016/0034-4257(89)90112-0
 
Segura Milena, Kanninen Markku, Suárez Damaris (2006): Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agroforestry Systems, 68, 143-150  https://doi.org/10.1007/s10457-006-9005-x
 
Seidel Dominik, Busch Gerald, Krause Benjamin, Bade Claudia, Fessel Carola, Kleinn Christoph (2015): Quantification of Biomass Production Potentials from Trees Outside Forests—A Case Study from Central Germany. BioEnergy Research, 8, 1344-1351  https://doi.org/10.1007/s12155-015-9596-z
 
Snavely Noah, Seitz Steven M., Szeliski Richard (2008): Modeling the World from Internet Photo Collections. International Journal of Computer Vision, 80, 189-210  https://doi.org/10.1007/s11263-007-0107-3
 
Tao W., Lei Y., Mooney P. (2011): Dense point cloud extraction from UAV captured images in forest area. In: Proceedings of the 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services (ICSDM 2011), Fuzhou, June 29–July 1, 2011: 389–392.
 
Turner Darren, Lucieer Arko, Watson Christopher (2012): An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds. Remote Sensing, 4, 1392-1410  https://doi.org/10.3390/rs4051392
 
Véga Cédric, Vepakomma Udayalakshmi, Morel Jules, Bader Jean-Luc, Rajashekar Gopalakrishnan, Jha Chandra, Ferêt Jérôme, Proisy Christophe, Pélissier Raphaël, Dadhwal Vinay (2015): Aboveground-Biomass Estimation of a Complex Tropical Forest in India Using Lidar. Remote Sensing, 7, 10607-10625  https://doi.org/10.3390/rs70810607
 
Wickham H. (2007): Reshaping data with the reshape package. Journal of Statistical Software, 21: v021.i12.
 
Wickham H. (2009): ggplot2: Elegant Graphics for Data Analysis. New York, Springer-Verlag: 213.
 
Wickham Hadley (2011): The Split-Apply-Combine Strategy for Data Analysis. Journal of Statistical Software, 40, -  https://doi.org/10.18637/jss.v040.i01
 
Zarco-Tejada P.J., Diaz-Varela R., Angileri V., Loudjani P. (2014): Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy, 55, 89-99  https://doi.org/10.1016/j.eja.2014.01.004
 
Zianis D., Muukkonen P., Mäkipää R., Mencuccini M. (2005): Biomass and Stem Volume Equations for Tree Species in Europe. Helsinki, Finnish Society of Forest Science, Finnish Forest Research Institute: 63.
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti