Nanopesticides: Current status and scope for their application in agriculture

https://doi.org/10.17221/102/2020-PPS
supplementary materialdownload PDF

 Nanotechnology is a rapidly evolving field that has the potential to revolutionise food systems and counter the present-day challenge of food security. It envisages taking agriculture from the era of indiscriminate natural resource use and environmental degradation to the brave new world of advanced systems with enhanced material use efficiency and targeted applications to reduce crop losses caused due to abiotic-biotic stresses as well as to give due considerations to the environment. To manage plant diseases and insect pests, pesticides are inevitably used in agriculture. However, the higher dosage of these chemicals on a per hectare basis has resulted in many environmental and health hazards. To tackle the conventional pesticide related issues, a new field of science called nanotechnology has led to the development of nanopesticides that have less active ingredients, but better efficiency. The nanopesticides contain the carrier molecule or the active nanosized ingredient with a very high surface area to the volume property that provides them unique exploitable-advantages. Several formulations, viz., nanoemulsions, nanosuspensions, nanogels, metal compound-based nanopesticides, have been developed for different modes of action and vivid applications. The biggest advantage comes due to the small size of the particles that help in properly spreading the ingredients on the pest surface and, thus, producing a better action than conventional pesticides. The use of nanoparticles in the form of nanopesticides, nanofertilisers, and nano delivery systems is on the increase day by day due to their higher efficiency and reduced dosage requirements. However, human beings and other organisms are also getting exposed to the nano-entities during the application or afterwards. The interactions of these engineered nano-entities with biological systems are relatively unknown thus far. Therefore, before their wider usage in crop production and protection, a better understanding of their interactions, and adverse effects, if any, is also crucial for a sustainable transition.

 

References:
Abreu F.O., Oliveira E.F., Paula H.C., de Paula R.C. (2012): Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydrate Polymers, 89: 1277–1282.  https://doi.org/10.1016/j.carbpol.2012.04.048
 
Acosta E. (2009): Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Current Opinion in Colloid and Interface Science, 14: 3–15.  https://doi.org/10.1016/j.cocis.2008.01.002
 
Adak T., Kumar J., Shakil N.A., Walia S. (2012): Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. Journal of Environmental Science and Health, Part B. Pesticides, 47: 217–225.
 
Anjum N.A., Adam V., Kizek R., Duarte A.C., Pereira E., Iqbal M., Lukatkin A.S., Ahmad I. (2015): Nanoscale copper in the soil-plant system – Toxicity and underlying potential mechanisms. Environmental Research, 138: 306–325.  https://doi.org/10.1016/j.envres.2015.02.019
 
Anton N., Benoit J.P., Saulnier P. (2008): Design and production of nanoparticles formulated from nano-emulsion templates – A review. Journal of Controlled Release, 128: 185–199.  https://doi.org/10.1016/j.jconrel.2008.02.007
 
Asli S., Neumann P.M. (2009): Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell and Environment, 32: 577–584.  https://doi.org/10.1111/j.1365-3040.2009.01952.x
 
Aziz N., Pandey R., Barman I., Prasad R. (2016): Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Frontiers in Microbiology, 7: 1984. doi: 10.3389/fmicb.2016.01984 https://doi.org/10.3389/fmicb.2016.01984
 
Badawy M.E., Rabea E.I. (2011): A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. International Journal of Carbohydrate Chemistry, 2011: 460381. doi: 10.1155/2011/460381 https://doi.org/10.1155/2011/460381
 
Bajpai S.K., Thomas V., Mohan Y.M., Sreedhar B. (2007): A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. Journal of Colloid and Interface Science, 315: 389–395.  https://doi.org/10.1016/j.jcis.2007.06.068
 
Balaure P., Grumezescu A.M. (2014): Methods for synthesizing the macromolecular constituents of smart nanosized carriers for controlled drug delivery. Current Medicinal Chemistry, 21: 3333–3374. https://doi.org/10.2174/0929867321666140304103437
 
Bang S.H., Yu Y.M., Hwang I.C., Park H.J. (2009): Formation of size-controlled nano carrier systems by self-assembly. Journal of Microencapsulation, 26: 722–733.  https://doi.org/10.3109/02652040902726994
 
Barik T.K., Sahu B., Swain V. (2008): Nanosilica-from medicine to pest control. Parasitology Research, 103: 253. doi: 10.1007/s00436-008-0975-7  https://doi.org/10.1007/s00436-008-0975-7
 
Bhagat D., Samanta S.K., Bhattacharya S. (2013): Efficient management of fruit pests by pheromone nanogels. Scientific Reports, 3: 1294. doi: 10.1038/srep01294  https://doi.org/10.1038/srep01294
 
Calder A.J., Dimkpa C.O., McLean J.E., Britt D.W., Johnson W., Anderson A.J. (2012): Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6. Science of the Total Environment, 429: 215–222.  https://doi.org/10.1016/j.scitotenv.2012.04.049
 
Cao L., Chen B., Zheng L., Wang D., Liu F., Huang Q. (2015): Assessment of potential dermal and inhalation exposure of workers to the insecticide imidacloprid using whole-body dosimetry in China. Journal of Environmental Sciences, 27: 139–146.  https://doi.org/10.1016/j.jes.2014.07.018
 
Carvalho F.P. (2006): Agriculture, pesticides, food security and food safety. Environmental Science and Policy, 9: 685–692.  https://doi.org/10.1016/j.envsci.2006.08.002
 
Chatterjee A.K., Chakraborty R., Basu T. (2014): Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology, 25: 135101. doi: 10.1088/0957-4484/25/13/135101 https://doi.org/10.1088/0957-4484/25/13/135101
 
Chen X., Schluesener H.J. (2008): Nanosilver: A nanoproduct in medical application. Toxicology Letters, 176: 1–12.  https://doi.org/10.1016/j.toxlet.2007.10.004
 
Chen H., Yada R. (2011): Nanotechnologies in agriculture: New tools for sustainable development. Trends in Food Science and Technology, 22: 585–594.  https://doi.org/10.1016/j.tifs.2011.09.004
 
Chen C., Han D., Cai C., Tang X. (2010): An overview of liposome lyophilization and its future potential. Journal of Controlled Release, 142: 299–311.  https://doi.org/10.1016/j.jconrel.2009.10.024
 
Chen K., Yu G., He F., Zhou Q., Xiao D., Li J., Feng Y. (2017): A pH-responsive emulsion stabilized by alginate-grafted anisotropic silica and its application in the controlled release of λ-cyhalothrin. Carbohydrate Polymers, 176: 203–213.  https://doi.org/10.1016/j.carbpol.2017.07.046
 
Choudhary G., Kumar J., Walia S., Parsad R., Parmar B.S. (2006): Development of controlled release formulations of carbofuran and evaluation of their efficacy against Meloidogyne incognita. Journal of Agricultural and Food Chemistry, 54: 4727–4733.  https://doi.org/10.1021/jf060153r
 
Croy S.R., Kwon G.S. (2006): Polymeric micelles for drug delivery. Current Pharmaceutical Design, 12: 4669–4684.  https://doi.org/10.2174/138161206779026245
 
Cvjetko P., Zovko M., Štefanić P.P., Biba R., Tkalec M., Domijan A.M., Balen B. (2018): Phytotoxic effects of silver nanoparticles in tobacco plants. Environmental Science and Pollution Research, 25: 5590–5602. https://doi.org/10.1007/s11356-017-0928-8
 
da Costa J.T., Forim M.R., Costa E.S., De Souza J.R., Mondego J.M., Junior A.L.B. (2014): Effects of different formulations of neem oil-based products on control Zabrotes subfasciatus (Boheman, 1833) (Coleoptera: Bruchidae) on beans. Journal of Stored Products Research, 56: 49–53.  https://doi.org/10.1016/j.jspr.2013.10.004
 
Das S., Chaudhury A. (2011): Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech, 12: 62–76.  https://doi.org/10.1208/s12249-010-9563-0
 
Demetzos C. (2015): Advanced drug delivery nanosystems: Perspectives and regulatory issues. In: Vlamos P., Alexiou A. (eds): GeNeDis 2014. Advances in Experimental Medicine and Biology. Cham, Springer: 195–198.
 
Dhawan A.K., Peshin R. (2009): Integrated pest management: Concept, opportunities and challenges. In: Peshin R., Dhawan A.K. (eds): Integrated Pest Management: Innovation-Development Process. Dordrecht, Springer: 51–81.
 
Divya K., Jisha M.S. (2018): Chitosan nanoparticles preparation and applications. Environmental Chemistry Letters, 16: 101–112. https://doi.org/10.1007/s10311-017-0670-y
 
Goulson D., Nicholls E., Botías C., Rotheray E.L. (2015): Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347: 1255957. doi: 10.1126/science.1255957  https://doi.org/10.1126/science.1255957
 
Hakamy A., Shaikh F.U.A., Low I.M. (2015): Characteristics of nanoclay and calcined nanoclay-cement nanocomposites. Composites Part B: Engineering, 78: 174–184.  https://doi.org/10.1016/j.compositesb.2015.03.074
 
Hayles J., Johnson L., Worthley C., Losic D. (2017): Nanopesticides: A review of current research and perspectives. In: Grumezescu A.M. (ed.): New Pesticides and Soil Sensors. Cambridge, Academic Press: 193–225.
 
He L., Liu Y., Mustapha A., Lin M. (2011): Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166: 207–215. https://doi.org/10.1016/j.micres.2010.03.003
 
Heiligtag F.J., Niederberger M. (2013): The fascinating world of nanoparticle research. Materials Today, 16: 262–271.  https://doi.org/10.1016/j.mattod.2013.07.004
 
Hellmann C., Greiner A., Wendorff J.H. (2011): Design of pheromone releasing nanofibers for plant protection. Polymers for Advanced Technologies, 22: 407–413.  https://doi.org/10.1002/pat.1532
 
Jasrotia P., Kashyap P.L., Bhardwaj A.K., Kumar S., Singh G.P. (2018): Scope and applications of nanotechnology for wheat production: A review of recent advances. Wheat and Barley Research, 10: 1–14.
 
Jiang J., Tong X., Morris D., Zhao Y. (2006): Toward photocontrolled release using light-dissociable block copolymer micelles. Macromolecules, 39: 4633–4640.  https://doi.org/10.1021/ma060142z
 
Jo Y.K., Kim B.H., Jung G. (2009): Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Disease, 93: 1037–1043.  https://doi.org/10.1094/PDIS-93-10-1037
 
Jung J.H., Kim S.W., Min J.S., Kim Y.J., Lamsal K., Kim K.S., Lee Y.S. (2010): The effect of nano-silver liquid against the white rot of the green onion caused by Sclerotium cepivorum. Mycobiology, 38: 39–45.  https://doi.org/10.4489/MYCO.2010.38.1.039
 
Kah M., Beulke S., Tiede K., Hofmann T. (2013): Nanopesticides: State of knowledge, environmental fate, and exposure modeling. Critical Reviews in Environmental Science and Technology, 43: 1823–1867.  https://doi.org/10.1080/10643389.2012.671750
 
Kah M., Walch H., Hofmann T. (2018): Environmental fate of nanopesticides: Durability, sorption and photodegradation of nanoformulated clothianidin. Environmental Science: Nano, 5: 882–889.  https://doi.org/10.1039/C8EN00038G
 
Kang M.A., Seo M.J., Hwang I.C., Jang C., Park H.J., Yu Y.M., Youn Y.N. (2012): Insecticidal activity and feeding behavior of the green peach aphid, Myzus persicae, after treatment with nano types of pyrifluquinazon. Journal of Asia-Pacific Entomology, 15: 533–541.  https://doi.org/10.1016/j.aspen.2012.05.015
 
Kashyap P.L., Xiang X., Heiden P. (2015): Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules, 77: 36–51.  https://doi.org/10.1016/j.ijbiomac.2015.02.039
 
Kashyap P.L., Rai P., Sharma S., Chakdar H., Kumar S., Pandiyan K., Srivastava A.K. (2016): Nanotechnology for the detection and diagnosis of plant pathogens. In: Dasgupta N., Ranjan S., Lichtfouse E. (eds): Nanoscience in Food and Agriculture 2. Cham, Springer: 253–276.
 
Kashyap P.L., Kumar S., Srivastava A.K. (2017): Nanodiagnostics for plant pathogens. Environmental Chemistry Letters, 15: 7–13.  https://doi.org/10.1007/s10311-016-0580-4
 
Kashyap P.L., Kumar S., Jasrotia P., Singh D.P., Singh G.P. (2020): Nanotechnology in wheat production and protection. In: Dasgupta N., Ranjan S., Lichtfouse E. (eds): Environmental Nanotechnology Volume 4. Cham, Springer: 165–194.
 
Katagi T. (2008): Surfactant effects on environmental behavior of pesticides. In: Whitacre D.M. (ed.): Reviews of Environmental Contamination and Toxicology. New York, Springer: 71–177.
 
Kataoka K., Harada A., Nagasaki Y. (2001): Block copolymer micelles for drug delivery: Design, characterization and biological significance. Advanced Drug Delivery Reviews, 47: 113–131.  https://doi.org/10.1016/S0169-409X(00)00124-1
 
Keck C.M., Müller R.H. (2013): Nanotoxicological classification system (NCS) – A guide for the risk-benefit assessment of nanoparticulate drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 84: 445–448.  https://doi.org/10.1016/j.ejpb.2013.01.001
 
Kim S.W., Jung J.H., Lamsal K., Kim Y.S., Min J.S., Lee Y.S. (2012): Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology, 40: 53–58.  https://doi.org/10.5941/MYCO.2012.40.1.053
 
Köhler H.R., Triebskorn R. (2013): Wildlife ecotoxicology of pesticides: Can we track effects to the population level and beyond? Science, 341: 759–765.  https://doi.org/10.1126/science.1237591
 
Kumar S., Bhanjana G., Sharma A., Dilbaghi N., Sidhu M.C., Kim K.H. (2017): Development of nanoformulation approaches for the control of weeds. Science of the Total Environment, 586: 1272–1278.  https://doi.org/10.1016/j.scitotenv.2017.02.138
 
Kumar S., Nehra M., Kedia D., Dilbaghi N., Tankeshwar K., Kim K.H. (2018): Carbon nanotubes: A potential material for energy conversion and storage. Progress in Energy and Combustion Science, 64: 219–253.  https://doi.org/10.1016/j.pecs.2017.10.005
 
Kurnik V., Gaberšek V., Unuk T., Tojnko S., Vogrin A., Vajs S., Lešnik M. (2012): Influence of alternative copper fungicide formulations on copper content in apple fruits. Erwerbs-Obstbau, 54: 161–170. https://doi.org/10.1007/s10341-012-0172-9
 
Laborde A. (2008): Pesticides. Children’s Health and Environment: Training Package. Geneva, World Health Organization. Available at https://www.who.int/ceh/capacity/Pesticides.pdf.
 
Lee M., Kim S.W. (2005): Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharmaceutical Research, 22: 1–10.  https://doi.org/10.1007/s11095-004-9003-5
 
Li X., Ke M., Zhang M., Peijnenburg W.J.G.M., Fan X., Xu J., Zhenyan Z., Tao L., Zhengwei F., Qian H. (2018): The interactive effects of diclofop-methyl and silver nanoparticles on Arabidopsis thaliana: Growth, photosynthesis and antioxidant system. Environmental Pollution, 232: 212–219.  https://doi.org/10.1016/j.envpol.2017.09.034
 
Liu W., Yao J., Cai M., Chai H., Zhang C., Sun J., Chandankere R., Masakorala K. (2014): Synthesis of a novel nanopesticide and its potential toxic effect on soil microbial activity. Journal of Nanoparticle Research, 16: 2677. doi: 10.1007/s11051-014-2677-7  https://doi.org/10.1007/s11051-014-2677-7
 
Lou X.W., Archer L.A., Yang Z. (2008): Hollow micro-/nanostructures: Synthesis and applications. Advanced Materials, 20: 3987–4019.  https://doi.org/10.1002/adma.200800854
 
Margulis-Goshen K., Magdassi S. (2013): Nanotechnology: An advanced approach to the development of potent insecticides. In: Ishaaya I., Palli S., Horowitz A. (eds): Advanced Technologies for Managing Insect Pests. Dordrecht, Springer: 295–314.
 
Mason T.G., Wilking J.N., Meleson K., Chang C.B., Graves S.M. (2006): Nanoemulsions: Formation, structure, and physical properties. Journal of Physics: Condensed Matter, 18: R635. doi: 10.1088/0953-8984/18/41/R01 https://doi.org/10.1088/0953-8984/18/41/R01
 
Masoomi M.Y., Bagheri M., Morsali A. (2016): High adsorption capacity of two Zn-based metal-organic frameworks by ultrasound assisted synthesis. Ultrasonics Sonochemistry, 33: 54–60.  https://doi.org/10.1016/j.ultsonch.2016.04.013
 
Mattos B.D., Rojas O.J., Magalhães W.L. (2017): Biogenic silica nanoparticles loaded with neem bark extract as green, slow-release biocide. Journal of Cleaner Production, 142: 4206–4213.  https://doi.org/10.1016/j.jclepro.2016.11.183
 
McClements D.J. (2012): Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter, 8: 1719–1729.  https://doi.org/10.1039/C2SM06903B
 
Mohanraj V.J., Chen Y. (2006): Nanoparticles – A review. Tropical Journal of Pharmaceutical Research, 5: 561–573.
 
Motornov M., Roiter Y., Tokarev I., Minko S. (2010): Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Progress in Polymer Science, 35: 174–211.  https://doi.org/10.1016/j.progpolymsci.2009.10.004
 
Mura S., Nicolas J., Couvreur P. (2013): Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12: 991–1003.  https://doi.org/10.1038/nmat3776
 
Müller R.H., Junghanns J.U. (2006): Drug nanocrystals/nanosuspensions for the delivery of poorly soluble drugs. In: Torchilin V.P. (ed.): Nanoparticulates as Drug Carriers. London, Imperial College Press: 307–328.
 
Nehra M., Dilbaghi N., Hassan A.A., Kumar S. (2019): Carbon-based nanomaterials for the development of sensitive nanosensor platforms. In: Deep A., Kumar S. (eds): Advances in Nanosensors for Biological and Environmental Analysis. Amsterdam, Elsevier: 1–25.
 
Nguyen H.M., Hwang I.C., Park J.W., Park H.J. (2012): Enhanced payload and photo-protection for pesticides using nanostructured lipid carriers with corn oil as liquid lipid. Journal of Microencapsulation, 29: 596–604.  https://doi.org/10.3109/02652048.2012.668960
 
Novikov B.N., Grimsley J.K., Kern R.J., Wild J.R., Wales M.E. (2010): Improved pharmacokinetics and immunogenicity profile of organophosphorus hydrolase by chemical modification with polyethylene glycol. Journal of Controlled Release, 146: 318–325.  https://doi.org/10.1016/j.jconrel.2010.06.003
 
Norman D.J., Chen J. (2011): Effect of foliar application of titanium dioxide on bacterial blight of geranium and Xanthomonas leaf spot of poinsettia. HortScience, 46: 426–428.  https://doi.org/10.21273/HORTSCI.46.3.426
 
Nuruzzaman M.D., Rahman M.M., Liu Y., Naidu R. (2016): Nanoencapsulation, nano-guard for pesticides: A new window for safe application. Journal of Agricultural and Food Chemistry, 64: 1447–1483.  https://doi.org/10.1021/acs.jafc.5b05214
 
Oh J.K., Drumright R., Siegwart D.J., Matyjaszewski K. (2008): The development of microgels/nanogels for drug delivery applications. Progress in Polymer Science, 33: 448–477.  https://doi.org/10.1016/j.progpolymsci.2008.01.002
 
Pardeshi C., Rajput P., Belgamwar V., Tekade A., Patil G., Chaudhary K., Sonje A. (2012): Solid lipid based nanocarriers: An overview. Acta Pharmaceutica, 62: 433–472.  https://doi.org/10.2478/v10007-012-0040-z
 
Paret M.L., Vallad G.E., Averett D.R., Jones J.B., Olson S.M. (2013a): Photocatalysis: Effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology, 103: 228–236. https://doi.org/10.1094/PHYTO-08-12-0183-R
 
Paret M.L., Palmateer A.J., Knox G.W. (2013b): Evaluation of a light-activated nanoparticle formulation of titanium dioxide with zinc for management of bacterial leaf spot on rosa ‘Noare’. HortScience, 48: 189–192.  https://doi.org/10.21273/HORTSCI.48.2.189
 
Paula H.C., Sombra F.M., de Freitas Cavalcante R., Abreu F.O., de Paula R.C. (2011): Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil. Materials Science and Engineering: C, 31: 173–178.  https://doi.org/10.1016/j.msec.2010.08.013
 
Pérez Quiñones J., Brüggemann O., Kjems J., Shahavi M.H., Peniche Covas C. (2018): Novel brassinosteroid-modified polyethylene glycol micelles for controlled release of agrochemicals. Journal of Agricultural and Food Chemistry, 66: 1612–1619.  https://doi.org/10.1021/acs.jafc.7b05019
 
Peteu S.F., Oancea F., Sicuia O.A., Constantinescu F., Dinu S. (2010): Responsive polymers for crop protection. Polymers, 2: 229–251.  https://doi.org/10.3390/polym2030229
 
Pinto R.V., Antunes F., Pires J., Graça V., Brandão P., Pinto M.L. (2017): Vitamin B3 metal organic frameworks as potential delivery vehicles for therapeutic nitric oxide. Acta Biomaterialia, 51: 66–74.  https://doi.org/10.1016/j.actbio.2017.01.039
 
Popp J., Pető K., Nagy J. (2013): Pesticide productivity and food security. A review. Agronomy for Sustainable Development, 33: 243–255. https://doi.org/10.1007/s13593-012-0105-x
 
Ragaei M., Sabry A.K.H. (2014): Nanotechnology for insect pest control. International Journal of Science, Environment and Technology, 3: 528–545.
 
Ramasamy T., Ruttala H.B., Gupta B., Poudel B.K., Choi H.G., Yong C.S., Kim J.O. (2017): Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review. Journal of Controlled Release, 258: 226–253.  https://doi.org/10.1016/j.jconrel.2017.04.043
 
Ramyadevi J., Jeyasubramanian K., Marikani A., Rajakumar G., Rahuman A.A. (2012): Synthesis and antimicrobial activity of copper nanoparticles. Materials Letters, 71: 114–116. https://doi.org/10.1016/j.matlet.2011.12.055
 
Rani P.U., Madhusudhanamurthy J., Sreedhar B. (2014): Dynamic adsorption of α-pinene and linalool on silica nanoparticles for enhanced antifeedant activity against agricultural pests. Journal of Pest Science, 87: 191–200.  https://doi.org/10.1007/s10340-013-0538-2
 
Rani R., Dahiya S., Dhingra D., Dilbaghi N., Kim K.H., Kumar S. (2017): Evaluation of anti-diabetic activity of glycyrrhizin-loaded nanoparticles in nicotinamide-streptozotocin-induced diabetic rats. European Journal of Pharmaceutical Sciences, 106: 220–230.  https://doi.org/10.1016/j.ejps.2017.05.068
 
Rizzati V., Briand O., Guillou H., Gamet-Payrastre L. (2016): Effects of pesticide mixtures in human and animal models: An update of the recent literature. Chemico-Biological Interactions, 254: 231–246.  https://doi.org/10.1016/j.cbi.2016.06.003
 
Robinson D.K.R., Salejova-Zadrazilova G. (2010): Nanotechnologies for nutrient and biocide delivery in agricultural production. Working Paper Version: 285–297.
 
Rodrigues S., Dionísio M., López C.R., Grenha A. (2012): Biocompatibility of chitosan carriers with application in drug delivery. Journal of Functional Biomaterials, 3: 615–641.  https://doi.org/10.3390/jfb3030615
 
Rodrigues L.A.S., Figueiras A., Veiga F., de Freitas R.M., Nunes L.C., da Silva F.E., da Silva L.C. (2013): The systems containing clays and clay minerals from modified drug release: A review. Colloids and Surfaces B: Biointerfaces, 103: 642–651.  https://doi.org/10.1016/j.colsurfb.2012.10.068
 
Rudzinski W.E., Dave A.M., Vaishnav U.H., Kumbar S.G., Kulkarni A.R., Aminabhavi T.M. (2002): Hydrogels as controlled release devices in agriculture. Designed Monomers and Polymers, 5: 39–65.  https://doi.org/10.1163/156855502760151580
 
Saba N., Jawaid M., Asim M. (2016): Recent advances in nanoclay/natural fibers hybrid composites. In: Jawaid M., Qaiss A., Bouhfid R. (eds): Nanoclay Reinforced Polymer Composites. Engineering Materials. Singapore, Springer: 1–28.
 
Sala M., Diab R., Elaissari A., Fessi H. (2018): Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. International Journal of Pharmaceutics, 535: 1–17.  https://doi.org/10.1016/j.ijpharm.2017.10.046
 
Sasson Y., Levy-Ruso G., Toledano O., Ishaaya I. (2007): Nanosuspensions: emerging novel agrochemical formulations. In: Ishaaya I., Horowitz A.R., Nauen R. (eds): Insecticides Design Using Advanced Technologies. Berlin, Springer, Heidelberg: 1–39.
 
Shakil N.A., Singh M.K., Pandey A., Kumar J., Pankaj, Parmar V.S., Singh M.K., Pandey R.P., Watterson A.C. (2010): Development of poly (ethylene glycol) based amphiphilic copolymers for controlled release delivery of carbofuran. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 47: 241–247.  https://doi.org/10.1080/10601320903527038
 
Shukla S.K., Mishra A.K., Arotiba O.A., Mamba B.B. (2013): Chitosan-based nanomaterials: A state-of-the-art review. International Journal of Biological Macromolecules, 59: 46–58.  https://doi.org/10.1016/j.ijbiomac.2013.04.043
 
Singh A., Garg G., Sharma P.K. (2010): Nanospheres: A novel approach for targeted drug delivery system. International Journal of Pharmaceutical Sciences Review and Research, 5: 84–88.
 
Sioutas C., Delfino R.J., Singh M. (2005): Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environmental Health Perspectives, 113: 947–955.  https://doi.org/10.1289/ehp.7939
 
Smith K., Evans D.A., El-Hiti G.A. (2008): Role of modern chemistry in sustainable arable crop protection. Philosophical Transactions of the Royal Society B: Biological Sciences, 363: 623–637.  https://doi.org/10.1098/rstb.2007.2174
 
Song S., Liu X., Jiang J., Qian Y., Zhang N., Wu Q. (2009): Stability of triazophos in self-nanoemulsifying pesticide delivery system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 350: 57–62.  https://doi.org/10.1016/j.colsurfa.2009.08.034
 
Song U., Jun H., Waldman B., Roh J., Kim Y., Yi J., Lee E.J. (2013): Functional analyses of nanoparticle toxicity: A comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicology and Environmental Safety, 93: 60–67.  https://doi.org/10.1016/j.ecoenv.2013.03.033
 
Soni K.S., Desale S.S., Bronich T.K. (2016): Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. Journal of Controlled Release, 240: 109–126.  https://doi.org/10.1016/j.jconrel.2015.11.009
 
Soppimath K.S., Aminabhavi T.M., Kulkarni A.R., Rudzinski W.E. (2001): Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, 70: 1–20.  https://doi.org/10.1016/S0168-3659(00)00339-4
 
Stackelberg P.E., Kauffman L.J., Ayers M.A., Baehr A.L. (2001): Frequently co-occurring pesticides and volatile organic compounds in public supply and monitoring wells, southern New Jersey, USA. Environmental Toxicology and Chemistry: An International Journal, 20: 853–865.  https://doi.org/10.1002/etc.5620200422
 
Stadler T., Buteler M., Weaver D.K. (2010): Novel use of nanostructured alumina as an insecticide. Pest Management Science, 66: 577–579.  https://doi.org/10.1002/ps.1915
 
Stadler T., Buteler M., Weaver D.K., Sofie S. (2012): Comparative toxicity of nanostructured alumina and a commercial inert dust for Sitophilus oryzae (L.) and Rhyzopertha dominica (F.) at varying ambient humidity levels. Journal of Stored Products Research, 48: 81–90.  https://doi.org/10.1016/j.jspr.2011.09.004
 
Sun D., Hussain H.I., Yi Z., Siegele R., Cresswell T., Kong L., Cahill D.M. (2014): Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Reports, 33: 1389–1402.  https://doi.org/10.1007/s00299-014-1624-5
 
Sweet M.J., Singleton I. (2015): Soil contamination with silver nanoparticles reduces Bishop pine growth and ectomycorrhizal diversity on pine roots. Journal of Nanoparticle Research, 17: 448. doi: 10.1007/s11051-015-3246-4  https://doi.org/10.1007/s11051-015-3246-4
 
Thuesombat P., Hannongbua S., Akasit S., Chadchawan S. (2014): Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicology and Environmental Safety, 104: 302–309.  https://doi.org/10.1016/j.ecoenv.2014.03.022
 
Timmer L.W., Dewdney M.M., Chung K.R. (2008): 2009 Florida Citrus Pest Management Guide: Melanose. Gainesville, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.
 
Tomlin C.D. (2009): The Pesticide Manual: A World Compendium. Alton, British Crop Production Council.
 
Torchilin V.P. (2014): Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature Reviews Drug Discovery, 13: 813–827.  https://doi.org/10.1038/nrd4333
 
Ulrichs C., Krause F., Rocksch T., Goswami A., Mewis I. (2006): Electrostatic application of inert silica dust based insecticides onto plant surfaces. Communications in Agricultural and Applied Biological Sciences, 71: 171–178.
 
Unsworth J.B., Corsi C., Van Emon J.M., Farenhorst A., Hamilton D.J., Howard C.J., Hunter R., Jenkins J.J., Kleter G.A., Kookana R.S., Lalah J.O., Leggett M., Miglioranza K.S.B., Miyagawa H., Peranginangin N., Rubin B., Saha B., Shakil N.A. (2016): Developing global leaders for research, regulation, and stewardship of crop protection chemistry in the 21st century. Journal of Agricultural and Food Chemistry, 64: 52–60.  https://doi.org/10.1021/jf5060744
 
Vaculikova E., Placha D., Jampilek J. (2015): Toxicology of drug nanocarriers. Chemické Listy, 109: 346–352.
 
Vellingiri K., Philip L., Kim K.H. (2017): Metal-organic frameworks as media for the catalytic degradation of chemical warfare agents. Coordination Chemistry Reviews, 353: 159–179.  https://doi.org/10.1016/j.ccr.2017.10.010
 
Wang M., Chen Y., Zhang R., Wang W., Zhao X., Du Y., Yin H. (2015): Effects of chitosan oligosaccharides on the yield components and production quality of different wheat cultivars (Triticum aestivum L.) in Northwest China. Field Crops Research, 172: 11–20.  https://doi.org/10.1016/j.fcr.2014.12.007
 
Watson S.B., Gergely A., Janus E.R. (2011): Where is agronanotechnolgoy heading in the United States and European Union. Natural Resources and Environment, 26: 8–12.
 
Wei W., Lu X., Wang Z., Pérez B., Liu J., Wu C., Dong M., Feng F., Mu H., Guo Z. (2017): Single-component solid lipid nanocarriers prepared with ultra-long chain amphiphilic lipids. Journal of Colloid and Interface Science, 505: 392–401.  https://doi.org/10.1016/j.jcis.2017.06.022
 
Whitehouse P., Rannard S. (2010): The application of nanodispersions to agriculture. Outlooks on Pest Management, 21: 190–192.  https://doi.org/10.1564/21aug11
 
Xiang C., Taylor A.G., Hinestroza J.P., Frey M.W. (2013): Controlled release of nonionic compounds from poly(lactic acid)/cellulose nanocrystal nanocomposite fibers. Journal of Applied Polymer Science, 127: 79–86. https://doi.org/10.1002/app.36943
 
Xin X., He Z., Hill M.R., Niedz R.P., Jiang X., Sumerlin B.S. (2018): Efficiency of biodegradable and pH-responsive polysuccinimide nanoparticles (PSI-NPs) as smart nanodelivery systems in grapefruit: In vitro cellular investigation. Macromolecular Bioscience, 18: 1800159. doi: 10.1002/mabi.201800159  https://doi.org/10.1002/mabi.201800159
 
Xu W., Ling P., Zhang T. (2013): Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. Journal of Drug Delivery, 2013: 340415. doi: 10.1155/2013/340315 https://doi.org/10.1155/2013/340315
 
Yang Z., Kang S.G., Zhou R. (2014): Nanomedicine: De novo design of nanodrugs. Nanoscale, 6: 663–677.  https://doi.org/10.1039/C3NR04535H
 
Zheng M., Falkeborg M., Zheng Y., Yang T., Xu X. (2013): Formulation and characterization of nanostructured lipid carriers containing a mixed lipids core. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 430: 76–84. https://doi.org/10.1016/j.colsurfa.2013.03.070
 
supplementary materialdownload PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti