Adli M. (2018): The CRISPR tool kit for genome editing and beyond. Nature Communications, 9: 1911–1933.
https://doi.org/10.1038/s41467-018-04252-2
Ahmad A., Rahman Z., Hameed U., Rao A.Q., Ahad A., Yasmeen A., Akram F., Bajwa K.S., Sheffler J., Nasir I.A., Shahid A.A., Iqbal M.J., Husnain T., Haider M.S., Brown J.K. (2017): Engineered disease resistance in cotton using rna interference to knock down Cotton leaf curl Kokran virus-Burewala and Cotton leaf curl Multan betasatellite Expression. Viruses, 9: 257. doi:10.3390/v9090257
https://doi.org/10.3390/v9090257
Ali Z., Ali S., Tashkandi M., Zaidi S.S., Mahfouz M.M. (2016): CRISPR/Cas9-Mediated immunity to geminiviruses: differential interference and evasion. Scientific Reports, 26: 6. doi: 10.1038/srep30223
https://doi.org/10.1038/srep30223
Bortesi L., Fischer R. (2015): The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances, 33: 41–52.
https://doi.org/10.1016/j.biotechadv.2014.12.006
Briddon R.W., Markham P.G. (2000): Cotton leaf curl virus disease. Virology Research, 71: 151–159.
https://doi.org/10.1016/S0168-1702(00)00195-7
Carthew R.W., Sontheimer E.J. (2009): Origins and mechanisms of miRNAs and siRNAs. Cell, 136: 642–655.
https://doi.org/10.1016/j.cell.2009.01.035
Chatterji A., Chatterji U., Beachy R.N., Fauquet C.M. (2000): Sequence parameters that determine specificity of binding of the replication-associated protein to its cognate site in two strains of Tomato leaf curl Virus-New Delhi. Virology, 273: 341–350.
https://doi.org/10.1006/viro.2000.0434
Chen J., Zhang W., Lin J., Wang F., Wu M., Chen C., Zheng Y., Peng X., Li J., Yuan Z. (2014): An efficient antiviral strategy for targeting hepatitis B virus genome using transcription activator-like effector nucleases. Molecular Therapy, 22: 303–311.
https://doi.org/10.1038/mt.2013.212
Czosnek H., Hariton-Shalev A., Sobol I., Gorovits R., Ghanim M. (2017): The incredible journey of begomoviruses in their whitefly vector. Viruses, 9: 273. doi: 10.3390/v910027
Fu Y., Foden J.A, Khayter C., Maeder M.L., Reyon D., Joung J.K., Sander J.D. (2013): High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 31: 822–826.
https://doi.org/10.1038/nbt.2623
Ha C., Coombs S., Revill P., Harding R., Vu M., Dale J. (2008). Molecular characterization of begomoviruses and DNA satellites from Vietnam: additional evidence that the New World geminiviruses were present in the Old World prior to continental separation. Journal of General Virology, 8: 312–326.
Ishino Y., Krupovic M., Forterre P. (2018): History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. Journal of Bacteriology, 200: e00580-17. doi:10.1128/JB.00580-17
https://doi.org/10.1128/JB.00580-17
Ji X., Zhang H., Zhang Y., Wang Y., Gao C. (2015): Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nature Plants, 28: 15144. doi: 10.1038/nplants.2015.144
https://doi.org/10.1038/nplants.2015.144
Jiang W., Brueggeman A.J., Horken K.M., Plucinak T.M., Weeks D.P. (2014): Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryotic Cell, 13: 1465–1469.
https://doi.org/10.1128/EC.00213-14
Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. (2012): A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337: 816–821.
https://doi.org/10.1126/science.1225829
Khan Z., Khan S.H., Ahmad A., Aslam S., Mubarik M.S., Khan S. (2018): CRISPR/dCas9-mediated inhibition of replication of Begomoviruses. International Journal of Agriculture and Biology, 21: 711–718.
Kirthi N., Priyadarshini C.G., Sharma P., Maiya S.P., Hemalatha V., Sivaraman P., Dhawan P., Rishi N., Savithri H.S. (2004): Genetic variability of begomoviruses associated with cotton leaf curl disease originating from India. Archives of Virology, 149: 2047–2057.
Leuzinger K., Dent M., Hurtado J., Stahnke J., Lai H., Zhou X., Chen Q. (2013): Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. Journal of Visual Experiments, 23: 77. doi: 10.3791/50521
https://doi.org/10.3791/50521
Long L., Guo D.D., Gao W., Yang W.W., Hou L.P., Ma X.N., Miao Y.C., Botella J.R., Song C.P. (2018): Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods, 14: 85–93.
https://doi.org/10.1186/s13007-018-0353-0
Mali P., Yang L., Esvelt K.M, Aach J., Guell M., DiCarlo J.E., Church G.M. (2013): RNA-guided human genome engineering via Cas9. Science, 339: 823–826.
https://doi.org/10.1126/science.1232033
Mansoor S., Khan S.H., Bashir A., Saeed M., Zafar Y., Malik K.A., Briddon R., Stanley J., Markham P.G. (1999): Identification of a novel circular single-stranded DNA associated with cotton leaf curl disease in Pakistan. Virology, 259: 190–199.
https://doi.org/10.1006/viro.1999.9766
Masood M., Briddon R.W. (2018): Transmission of cotton leaf curl disease: answer to a long-standing question. Virology General, 54: 743–745.
https://doi.org/10.1007/s11262-018-1605-9
Mohanta T., Bashir T., Hashem A., AbdAllah E., Bae H. (2017): Genome editing tools in plants. Genes (Basel), 8: 399–424.
https://doi.org/10.3390/genes8120399
Mubarik S.M., Khan S.H., Sadia B., Ahmad A. (2019): CRISPR-Cas9 based suppression of Cotton leaf curl Virus in Nicotiana benthamiana. International Journal of Agriculture and Biology, 3: 517–522.
Naito Y., Hino K., Bono H., Ui-Tei K. (2015): CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics, 31: 1120–1123.
https://doi.org/10.1093/bioinformatics/btu743
Qadir R., Khan Z.A., Monga D., Khan J.A. (2019): Diversity and Recombination analysis of Cotton leaf curl Multan virus: a highly emerging begomovirus in northern India. BMC Genomics, 20: 274. doi: 10.1186/s12864-019-5640-2
https://doi.org/10.1186/s12864-019-5640-2
Rahman M.U., Khan A.Q., Rahmat Z., Iqbal M.A., Zafar Y. (2017): Genetics and genomics of cotton leaf curl disease, its viral causal agents and whitefly vector: a way forward to sustain cotton fiber security. Frontiers in Plant Science, 8: 1157–1168.
https://doi.org/10.3389/fpls.2017.01157
Rojas M.R., Hagen C., Lucas W.J., Gilbertson R.L. (2005): Exploiting chinks in the plant's armor: evolution and emergence of geminiviruses. Annual Review of Phytopathology, 43: 361–394.
https://doi.org/10.1146/annurev.phyto.43.040204.135939
Saeed M., Briddon R.W., Dalakourous A., Krczal G., Wasseneger M. (2015): Functional analysis of Cotton leaf curl kokran virus/cotton leaf curl Multan betasatellite RNA silencing suppressors. Biology, 4: 697–714.
https://doi.org/10.3390/biology4040697
Sattar M.N., Kvarnheden A., Saeed M., Briddon R.W. (2013): Cotton leaf curl disease – an emerging threat to cotton production worldwide. Journal of General Virology, 94: 695–710.
https://doi.org/10.1099/vir.0.049627-0
Sovová T., Kerins G., Demnerová K., Ovesná J. (2017): Genome editing with engineered nucleases in economically important animals and plants: state of the art in the research pipeline. Current Issues in Molecular Biology, 21: 41–62.
Tahir M.N., Amin I., Briddon R.W., Mansoor S. (2011): The merging of two dynasties-identification of an African cotton leaf curl disease-associated begomovirus with cotton in Pakistan. PLoS ONE, 6:(5)e20366. doi: 10.1371/journal.pone.0020366
https://doi.org/10.1371/journal.pone.0020366
Wei J., He Y.Z., Guo Q., Guo T., Liu Y.Q., Zhou X.P., Liu S.S. Wang W.X. (2017): Vector development and vitellogenin determine the transovarial transmission of begomoviruses, Protocols of National Academy of Sciences USA, 114: 6746–6751.
https://doi.org/10.1073/pnas.1701720114
Xing H.L., Dong L., Wang Z.P., Zhang H.Y., Han C.Y., Liu B., Wang X.C., Chen Q.J. (2014): A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology, 14: 327. doi:10.1186/s12870-014-0327-y
https://doi.org/10.1186/s12870-014-0327-y
Yin K., Han T., Xie K., Zhao J., Song J., Liu Y. (2019): Engineer complete resistance to Cotton Leaf Curl Multan virus by the CRISPR/Cas9 system in Nicotiana Benthamiana. Phytopathology Research, 1:9. doi: 10.1186/s42483-019-0017-7
https://doi.org/10.1186/s42483-019-0017-7
Zaidi S.S., Tashkandi M., Mansoor S., Mahfouz M.M. (2016): Engineering plant immunity using crispr/cas9 to generate virus resistance. Frontiers in Plant Science, 7: 1673. doi: 10.3389/fpls.2016.01673.
https://doi.org/10.3389/fpls.2016.01673
Zhang Z., Mao Y., Ha S., Liu W., Botella J,R., Zhu J.K. (2016): A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Reports, 35: 1519–1533.
https://doi.org/10.1007/s00299-015-1900-z