Screening of eggplant genotypes for resistance to bacterial wilt disease caused by Clavibacter michiganensis subsp. michiganensis

https://doi.org/10.17221/105/2020-PPSCitation:

Citation: Boyaci H.F., Kabas A., Aysan Y., Prohens J. (2021): Screening of eggplant genotypes for resistance to bacterial wilt disease caused by Clavibacter michiganensis subsp. michiganensis. Plant Protect. Sci., 57: 112–121. 

download PDF

Clavibacter michiganensis subsp. michiganensis (Cmm) is one of the phytopathogenic bacteria causing bacterial wilt disease and severe yield losses in tomatoes and other solanaceous vegetables. Although there are some reports on Cmm infections in eggplants (Solanum melongena), there is no information available on the resistance sources and genetic control of the resistance to Cmm in this crop. We performed a search for resistance sources to Cmm in eggplants, in a set of 46 genotypes including landraces, inbred lines and cultivars and some cultivated and wild relatives, as well as an analysis of the genetic control of the resistance. A mixture of different Cmm strains from different genomic groups was used for the screening. Plants were inoculated through the injection of 10 µL of a Cmm suspension at a concentration of 107 cfu/mL in a single point of the stem. The symptoms were recorded at nine weeks after the inoculation with a 0–4 symptoms scale. The differences were observed in the symptoms in the collection evaluated, with the disease severity index of the genotypes ranging from 0.00 to 4.00. While 31 genotypes displayed no symptoms, three cultivated eggplant genotypes were highly susceptible. Reciprocal F1 and F2 generations were obtained from the crosses between the most susceptible genotype (CT30) and a resistant one (CT49). The genetic control of the resistance adjusted well to one dominant and one recessive gene model underlying the resistance to Cmm. These results are important for selection and breeding for resistance to Cmm in eggplants.

References:
Ansari M., Taghavi S. M., Hamzehzarghani H., Valenzuela M., Siri M. I., Osdaghi E. (2019): Multiple introductions of tomato pathogen Clavibacter michiganensis subsp. michiganensis into Iran as revealed by a global-scale phylogeographic analysis. Applied and Environmental Microbiology, 85: e02098-19. doi: 10.1128/AEM.02098-19 https://doi.org/10.1128/AEM.02098-19
 
Barchi L., Toppino L., Valentino D., Bassolino L., Portis E., Lanteri S., Rotino G. L. (2018): QTL analysis reveals new eggplant loci involved in resistance to fungal wilts. Euphytica, 214: 20. doi: 10.1007/s10681-017-2102-2 https://doi.org/10.1007/s10681-017-2102-2
 
Burokienė D., Sobiczewski P., Berczyński S. (2005): Phenotypic characterization of Clavibacter michiganensis subsp. michiganensis isolates from Lithuania. Phytopathologia Polonica, 38: 63–77.
 
Catara V., Bella P. (2020): Bacterial diseases. In: Integrated Pest and Disease Management in Greenhouse Crops. Cham, Springer: 33–54.
 
Dreier J., Bermpohl A., Eichenlaub R. (1995): Southern hybridization and PCR for specific detection of phytopathogenic Clavibacter michiganensis subsp. michiganensis. Phytopathology, 85: 462–468. https://doi.org/10.1094/Phyto-85-462
 
Daunay M.C., Salinier J., Aubriot X. (2019): Crossability and diversity of eggplants and their wild relatives. In: Chapman M.A. (ed.): The Eggplant Genome. Cham, Springer: 135–191.
 
Davis M.J., Gillaspie Jr A.G., Vidaver A.K., Harris R.W. (1984): Clavibacter: A new genus containing some phytopathogenic coryneform bacteria, including Clavibacter xyli subsp. xyli sp. nov., subsp. nov. and Clavibacter xyli subsp. cynodontis subsp. nov., pathogens that cause ratoon stunting disease of sugarcane and bermudagrass stunting disease. International Journal of Systematic and Evolutionary Microbiology, 34: 107–117.
 
Francis D.M., Kabelka E., Bell J., Franchino B., St. Clair D. (2001): Resistance to bacterial canker in tomato (Lycopersicon hirsutum LA407) and its progeny derived from crosses to L. esculentum. Plant Disease, 85: 1171–1176. https://doi.org/10.1094/PDIS.2001.85.11.1171
 
Gleason M.L., Gitaitis R.D., Ricker M.D. (1993): Recent progress in understanding and controlling bacterial canker of tomato in eastern North America. Plant Disease,  https://doi.org/10.1094/PD-77-1069
 
77: 1069–1076.
 
Kabas A., Boyaci H.F., Horuz S., Aysan Y., Ilbi H. (2018): Investigation on identification of new resistant resources to bacterial canker and wilt disease. Fresenius Environmental Bulletin, 27: 8498–8504.
 
Kara S., Horuz S., Cetinkaya Yıldız R,. Aysan Y. (2018): Bacterial pathogens on eggplant in Turkey. In: IX International Scientific Agriculture Symposium, Jahorina, Oct 4–7, 2018: 727.
 
Karthika S., Varghese S., Jisha M. S. (2020): Exploring the efficacy of antagonistic rhizobacteria as native biocontrol agents against tomato plant diseases. 3 Biotech, 10: 1–17. https://doi.org/10.1007/s13205-020-02306-1
 
Khalid A., Khan R.A.A., Ahmad M., Ali A., Alam S.S., Naz I. (2019): Management of bacterial canker of tomato caused by Clavibecter michiganensis subsp. michiganensis (Smith and Davis et al.) using different antibiotics. Pure and Applied Biology, 8: 1841–1849. https://doi.org/10.19045/bspab.2019.80128
 
Klement Z., Rudolph K., Sands D.C. (1990): Methods in Phytobacteriology. Budapest, Akademiai Kiado.
 
Kumar A., Dadlani M., Kumar R., Jacob S.R. (2014): Identification and validation of informative SSR markers suitable for ensuring genetic purity of brinjal (Solanum melongena L.) hybrid seeds. Sciantia Horticulturae, 171: 95–100. https://doi.org/10.1016/j.scienta.2014.03.034
 
Kumar A., Sharma V., Jain B.T., Kaushik P. (2020): Heterosis breeding in eggplant (Solanum melongena L.): Gains and provocations. Plants, 9: 403. doi: 10.3390/plants9030403 https://doi.org/10.3390/plants9030403
 
Lelliott R.A., Stead D.E. (1987): Methods for the Diagnosis of Bacterial Diseases of Plants. Oxford, Blackwell Scientific Publications.
 
Li X., Tambong J., Yuan K.X., Chen W., Xu H., Levesque C.A., De Boer S.H. (2018): Re-classification of Clavibacter michiganensis subspecies on the basis of wholegenome and multi-locus sequence analyses. International Journal of Systematic and Evolutionary Microbiology, 68: 234–240.  https://doi.org/10.1099/ijsem.0.002492
 
Little T.M., Hills F.J. (1978): Agricultural Experimentation: Design and Analysis. New York, Wiley.
 
Louws F.J., Bell J., Medina-Mora C.M., Smart C.D., Opgenorth D., Ishimaru C.A., Hausbeck M.K., de Bruijn F.J., Fulbright D.W. (1998): rep-PCR-mediated genomic fingerprinting:
 
A rapid and effective method to identify Clavibacter michiganensis. Phytopathology, 88: 862–868. https://doi.org/10.1094/PHYTO.1998.88.8.862
 
Méndez V., Valenzuela M., Salvà-Serra F., Jaén-Luchoro D., Besoain X., Moore E.R., Seeger M. (2020): Comparative genomics of pathogenic Clavibacter michiganensis subsp. michiganensis strains from chile reveals potential virulence features for tomato plants. Microorganisms, 8: 1679. doi: 10.3390/microorganisms8111679 https://doi.org/10.3390/microorganisms8111679
 
Milijašević S., Todorović B., Potočnik I., Rekanović E., Stepanović M. (2009): Effects of copper-based compounds, antibiotics and a plant activator on population sizes and spread of Clavibacter michiganensis subsp. michiganensis in greenhouse tomato seedlings. Pesticidi i Fitomedicina, 24: 19–27. https://doi.org/10.2298/PIF0901019M
 
Mohd Nadzir M.M., Vieira Lelis F.M., Thapa B., Ali A., Visser R.G.F., van Heusden A.W., van der Wolf J.M. (2019): Development of an in vitro protocol to screen Clavibacter michiganensis subsp. michiganensis pathogenicity in different Solanum species. Plant Pathology, 68: 42–48. https://doi.org/10.1111/ppa.12923
 
Namisy A., Chen J.R., Prohens J., Metwally E., Elmahrouk M., Rakha M. (2019): Screening cultivated eggplant and wild relatives for resistance to bacterial wilt (Ralstonia solanacearum). Agriculture, 9: 157. doi: 10.3390/agriculture9070157 https://doi.org/10.3390/agriculture9070157
 
Nissinen R., Lai F.M., Laine M.J., Bauer P.J., Reilley A.A., Li X., De Boer S.H., Metzler M.C. (1997): Clavibacter michiganensis subsp. sepedonicus elicits a hypersensitive response in tobacco and secretes hypersensitive response-inducing protein(s). Phytopathology, 87: 678–684. https://doi.org/10.1094/PHYTO.1997.87.7.678
 
Osdaghi E., Ansari M., Taghavi S.M., Zarei S., Koebnik R., Lamichhane J.R. (2018): Pathogenicity and phylogenetic analyis of Clavibacter michiganensis strains associated with tomato plants in Iran. Plant Pathology, 67: 957–970. https://doi.org/10.1111/ppa.12801
 
Poysa V. (1993): Evaluation of tomato breeding lines resistant to bacterial canker. Canadian Journal of Plant Pathology, 15: 301–304. https://doi.org/10.1080/07060669309501927
 
Saini D.K., Kaushik P. (2019): Visiting eggplant from a biotechnological perspective: A review. Scientia Horticulturae, 253: 327–340. https://doi.org/10.1016/j.scienta.2019.04.042
 
Sen Y., Feng Z., Vandenbroucke H., van der Wolf J., Visser R.G., van Heusden A.W. (2013): Screening for new sources of resistance to Clavibacter michiganensis subsp. michiganensis (Cmm) in tomato. Euphytica, 190: 309–317. https://doi.org/10.1007/s10681-012-0802-1
 
Sen Y., van der Wolf J., Visser R. G., van Heusden S. (2015). Bacterial canker of tomato: Current knowledge of detection, management, resistance, and interactions. Plant Disease, 99: 4–13. https://doi.org/10.1094/PDIS-05-14-0499-FE
 
Sen Y., Aysan Y., Mirik M., Ozdemir D., Meijer-Dekens F., van der Wolf J.M., Visser G.F.R., van Heusden S. (2018): Genetic characterization of Clavibacter michiganensis subsp. michiganensis population in Turkey. Plant Disease, 102: 300–308. https://doi.org/10.1094/PDIS-02-17-0276-RE
 
Sharabani G., Manulis-Sasson S., Borenstein M., Shulhani R., Lofthouse M., Chalupowicz L., Shtienberg D. (2013): The significance of guttation in the secondary spread of Clavibacter michiganensis subsp. michiganensis in tomato greenhouses. Plant Pathology, 62: 578–586. https://doi.org/10.1111/j.1365-3059.2012.02673.x
 
van Heusden A.W., Koornneef M., Voorrips R.E., Brüggemann W., Pet G., Vrielink-van Ginkel R., Chen X., Lindhout P. (1999): Three QTLs from Lycopersicon peruvianum confer a high level of resistance to Clavibacter michiganensis ssp. michiganensis. Theoretical and Applied Genetics, 99: 1068–1074. https://doi.org/10.1007/s001220051416
 
van der Wolf J.M., Elphinstone J.G., Stead D.E., Metzler M., Muller P., Hukkanen A., Karjalainen R. (2005): Epidemiology of Clavibacter michiganensis subsp. sepedonicus in relation to control of bacterial ring rot. Report 95. Plant Research International B.V., Wageningen.
 
Waleron M., Waleron K., Kamasa J., Przewodowski W., Lojkowska E. (2011): Polymorphism analysis of housekeeping genes for identification and differentiation of Clavibacter michiganensis subspecies. European Journal of Plant Pathology, 131: 341–354. https://doi.org/10.1007/s10658-011-9812-4
 
Westra A.A.G., Slack S.A. (1994): Effect of interaction of inoculum dose, cultivar, and geographic location on the magnitude of bacterial ring rot symptom expression in potato. Phytopathology, 84: 228–235. https://doi.org/10.1094/Phyto-84-228
 
Yim K.O., Lee H.I., Kim J.H., Lee S.D., Cho J.H., Cha J.S. (2012): Characterization of phenotypic variants of Clavibacter michiganensis subsp. michiganensis isolated from Capsicum annuum. European Journal of Plant Pathology, 133: 559–575. https://doi.org/10.1007/s10658-011-9927-7
 
Yang W., Francis D.M. (2007): Genetics and breeding for resistance to bacterial diseases in tomato: Prospects for marker-assisted selection. In: Razdan M.K., Mattoo A.K. (eds): Genetic Improvement of Solanaceous Crops, Vol 2: Tomato. Enfield, CRC Press: 379–419.
 
Yuqing W., Zhang Y., Zhipeng G., Wencai Y. (2018): Breeding for resistance to tomato bacterial diseases in China: challenges and prospects. Horticultural Plant Journal,
 
4: 193–207.
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti