Control of plant sap-sucking insects using entomopathogenic fungi Isaria fumosorosea strain (Ifu13a)

https://doi.org/10.17221/118/2017-PPSCitation:Bugti G.A., Na C., Bin W., Feng L.H. (2018): Control of plant sap-sucking insects using entomopathogenic fungi Isaria fumosorosea strain (Ifu13a). Plant Protect. Sci., 54: 258-264.
download PDF

The virulence of the Isaria fumosorosea strain (Ifu13a) against different plant sap-sucking insects such as Jacobiasca formosana Paoli (Hemiptera: Cicadellidae), Aphis gossypii Glover (Hemiptera: Aphididae), Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae), and Stephanitis nashi Esaki et Takeya (Hemiptera: Tingidae) in laboratory condition at 21 ± 1°C temperature and 78 ± 5% relative humidity was determined. We found that the Ifu13a strain had excellent potential to control the target insects. The mortality of the tested insect species ranged from 81 to 100% in the concentration of 1 × 108 conidia/ml. However, the lowest mortality of 33% was observed in the concentration of 1 × 105 conidia/ml against the S. nashi population. Median lethal times (LT50) were obtained from a regression-probit value which indicated 4.1, 4.1, 4.8, and 7.3 days at a concentration of 1 × 108 conidia/ml, whereas, median lethal concentration dosages (LC50) were calculated as 3.9 × 103, 6.8 × 104, 3.0 × 104, and 6.9 × 105 conidia/ml against J. formosana, A. gossypii, B. tabaci, and S. nashi, respectively. The present study showed that the Ifu13a fungal strain is highly pathogenic to the target insects, and it can be used as a biocontrol agent against plant sap-sucking insect species under favourable weather conditions.

References:
Abbott W. S. (1925): A Method of Computing the Effectiveness of an Insecticide. Journal of Economic Entomology, 18, 265-267  https://doi.org/10.1093/jee/18.2.265a
 
Ali Shaukat, Huang Zhen, Zou Shixing, Bashir Muhammad Hamid, Wang Zeqing, Ren Shunxiang (2012): The effect of insecticides on growth, germination and cuticle-degrading enzyme production by Isaria fumosorosea. Biocontrol Science and Technology, 22, 1047-1058  https://doi.org/10.1080/09583157.2012.708394
 
Antwi F.B., Reddy G.V. (2015): Toxicological effects of pyrethroids on non-target aquatic insects. Environmental Toxicology & Pharmacology 40: 915–923.
 
Arthurs Steven Paul, Aristizábal Luis Fernando, Avery Pasco Bruce (2013): Evaluation of Entomopathogenic Fungi Against Chilli Thrips, Scirtothrips dorsalis. Journal of Insect Science, 13, 1-16  https://doi.org/10.1673/031.013.3101
 
Baffourawuah S., Annan A.A., Maigaascofare O., Dieudonné S.D., Adjeikusi P., Owusudabo E., Obiridanso K. (2016): Insecticide resistance in malaria vectors in Kumasi, Ghana. Parasites & Vectors, 9: 633.
 
Baiyun, Yuhong C., NA C., Yihao L., Bugti G.A., Bin W. (2016): Effects of Humidity and Temperature on the pathogenecity of Beauveria bassiana against Stephanitis nashi and Locusta migratoria manilensis. Chinese Journal of Biological Control, 6: 735–742.
 
Barrios C.E., Bustillo A.E., Ocampo K.L., Reina M.A., Alvarado M.H.L. (2016): Efficacy of entomopathogenic fungi to control Leptopharsa gibbicarina (Hemiptera: Tingidae) in oil palm. Revista Colombiana de Entomologia, 42: 22–27.
 
Boopathi T., Karuppuchamy P., Singh S.B., Kalyanasundaram M., Mohankumar S., Ravi M. (2015a): Microbial control of the invasive spiraling whitefly on cassava with entomopathogenic fungi. Brazilian Journal of Microbiology, 46: 1077–1085.
 
Boopathi T., Karuppuchamy P., Singh S.B., Ravi M., Manju T. (2015b): Microbial control of exotic spiraling whitefly, Aleurodicus dispersus with entomopathogenic fungi on cassava under open field conditions. Indian Journal of Horticulture, 72: 370–375.
 
Brück Ernst, Elbert Alfred, Fischer Reiner, Krueger Stephen, Kühnhold Jürgen, Klueken A. Michael, Nauen Ralf, Niebes Jean-Francois, Reckmann Udo, Schnorbach Hans-Jürgen, Steffens Robert, van Waetermeulen Xavier (2009): Movento®, an innovative ambimobile insecticide for sucking insect pest control in agriculture: Biological profile and field performance. Crop Protection, 28, 838-844  https://doi.org/10.1016/j.cropro.2009.06.015
 
Chandler D., Heale J.B., Gillespie A.T. (1994): Effect of osmotic potential on the germination of conidia and colony growth of Verticillium lecanii. Mycological Research, 98, 384-388  https://doi.org/10.1016/S0953-7562(09)81193-3
 
Chen M., Zhang D., Peng F., Zengzhi L.I. (2014): Wettable powder development of isaria javanica for control of the lesser green leafhopper, Empoasca vitis. Chinese Journal of Biological Control, 30: 51–57.
 
Crop I. (2012): IBM SPSS Statistics for Windows, Version 21.0. Armonk, IBM Corp.
 
Dhaliwal G.S., Jindal V., Dhawan A.K. (2010): Insect pest problems and crop losses: changing trends. Indian Journal of Ecology, 37: 1–7.
 
Duarte R. T., Gonçalves K. C., Espinosa D. J. L., Moreira L. F., De Bortoli S. A., Humber R. A., Polanczyk R. A. (2016): Potential of Entomopathogenic Fungi as Biological Control Agents of Diamondback Moth (Lepidoptera: Plutellidae) and Compatibility With Chemical Insecticides. Journal of Economic Entomology, 109, 594-601  https://doi.org/10.1093/jee/tow008
 
Faria Marcos, Wraight Stephen P. (2001): Biological control of Bemisia tabaci with fungi. Crop Protection, 20, 767-778  https://doi.org/10.1016/S0261-2194(01)00110-7
 
Finney D.J. (1971): Probit Analysis. New York, Cambridge University Press.
 
Fransen Joanne J., Winkelman Kees, van Lenteren Joop C. (1987): The differential mortality at various life stages of the greenhouse whitefly, Trialeurodes vaporariorum (Homoptera: Aleyrodidae), by infection with the fungus Aschersonia aleyrodis (Deuteromycotina: Coelomycetes). Journal of Invertebrate Pathology, 50, 158-165  https://doi.org/10.1016/0022-2011(87)90116-9
 
Fytrou A., Schofield P. G, Kraaijeveld A. R, Hubbard S. F (2006): Wolbachia infection suppresses both host defence and parasitoid counter-defence. Proceedings of the Royal Society B: Biological Sciences, 273, 791-796  https://doi.org/10.1098/rspb.2005.3383
 
Gao Tianni, Wang Zhaolei, Huang Yü, Keyhani Nemat O., Huang Zhen (2017): Lack of resistance development in Bemisia tabaci to Isaria fumosorosea after multiple generations of selection. Scientific Reports, 7, -  https://doi.org/10.1038/srep42727
 
Haider I., Suhail A. (2013): Selectivity of Insecticides to Beneficial Insect. Saarbrücken, Lap Lambert Academic Publishing.
 
Jandricic S.E., Filotas M., Sanderson J.P., Wraight S.P. (2014): Pathogenicity of conidia-based preparations of entomopathogenic fungi against the greenhouse pest aphids Myzus persicae, Aphis gossypii, and Aulacorthum solani (Hemiptera: Aphididae). Journal of Invertebrate Pathology, 118, 34-46  https://doi.org/10.1016/j.jip.2014.02.003
 
Jaronski Stefan T. (2010): Ecological factors in the inundative use of fungal entomopathogens. BioControl, 55, 159-185  https://doi.org/10.1007/s10526-009-9248-3
 
KAVALLIERATOS NICKOLAS G., ATHANASSIOU CHRISTOS G., AOUNTALA MARIA M., KONTODIMAS DEMETRIUS C. (2014): Evaluation of the Entomopathogenic Fungi Beauveria bassiana, Metarhizium anisopliae, and Isaria fumosorosea for Control of Sitophilus oryzae. Journal of Food Protection, 77, 87-93  https://doi.org/10.4315/0362-028X.JFP-13-196
 
Kontsedalov Svetlana, Abu-Moch Fauzi, Lebedev Galina, Czosnek Henryk, Horowitz A Rami, Ghanim Murad (2012): Bemisia tabaci Biotype Dynamics and Resistance to Insecticides in Israel During the Years 2008–2010. Journal of Integrative Agriculture, 11, 312-320  https://doi.org/10.1016/S2095-3119(12)60015-X
 
Lacey L.A., Fransen J.J., Carruthers R.I. (1996): Global distribution of naturally occurring fungi of Bemisia, their biologies and use as biological control agents. In: Gerling D., Mayer R.T. (eds): Bemisia 1995: Taxonomy, Biology, Damage, Control and Management. Andover, Intercept: 356–456.
 
Long D.W., Drummond F.A., Groden E., Donahue D.W. (2000): Modelling Beauveria bassiana horizontal transmission. Agricultural & Forest Entomology, 2: 19–32.
 
Majeed M.Z., Ma C.S., Fiaz M., Afzal M. (2017): Entomopathogenicity of three muscardine fungi, Beauveria bassiana, Isaria fumosorosea and Metarhizium anisopliae, against the Asian citrus psyllid, Diaphorina citri kuwayama (Hemiptera: Psyllidae). Egyptian Journal of Biological Pest Control, 27: 211–216.
 
Müller E.J. (2000): Control of the brown locust, Locustana pardalina (Walker) (Orthoptera: Acrididae), using a mycoinsecticide: addressing the issues of speed-of-kill, dose rate, mortality and reduction in feeding. African Entomology, 8: 217–221.
 
Muñiz-Paredes Facundo, Miranda-Hernández Francisco, Loera Octavio (2017): Production of conidia by entomopathogenic fungi: from inoculants to final quality tests. World Journal of Microbiology and Biotechnology, 33, -  https://doi.org/10.1007/s11274-017-2229-2
 
Potrich Michele, Neves Pedro Manuel Oliveira Janeiro, Alves Luis Francisco Angeli, Pizzatto Mariana, Silva Everton Ricardi Lozano, Luckmann Daiane, Gouvea Alfredo, Roman Jéssica Cavalcanti (2011): Virulência de fungos entomopatogênicos a ninfas de Bemisia tabaci (Genn.) (Hemiptera: Aleyrodidae). Semina: Ciências Agrárias, 32, 1783-  https://doi.org/10.5433/1679-0359.2011v32n4Sup1p1783
 
Robert Schemmer, Petra Chládeková, Juraj Medo, Marek Barta (2016): Natural prevalence of entomopathogenic fungi in hibernating pupae of Cameraria ohridella (Lepidoptera: Gracillariidae) and virulence of selected isolates. Plant Protection Science, 52, 199-208  https://doi.org/10.17221/110/2015-PPS
 
Salim-Abadi Y., Oshaghi M.A., Enayati A.A., Abai M.R., Vatandoost H., Eshraghian M.R., Mirhendi H., Hanafi-Bojd A.A., Gorouhi M.A., Rafi F. (2016): High insecticides resistance in Culex pipiens (Diptera: Culicidae) from Tehran, capital of Iran. Journal of Arthropod-Borne Diseases, 10: 483–492.
 
Sevim Ali, Donzelli Bruno G. G., Wu Dongliang, Demirbag Zihni, Gibson Donna M., Turgeon B. Gillian (2012): Hydrophobin genes of the entomopathogenic fungus, Metarhizium brunneum, are differentially expressed and corresponding mutants are decreased in virulence. Current Genetics, 58, 79-92  https://doi.org/10.1007/s00294-012-0366-6
 
SEVİM Ali, DEMİR İsmail, SÖNMEZ Emine, KOCAÇEVİK Seda, DEMİRBAĞ Zihni (2013): Evaluation of entomopathogenic fungi against the sycamore lace bug, Corythucha ciliata (Say) (Hemiptera: Tingidae). TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 37, 595-603  https://doi.org/10.3906/tar-1208-55
 
Sosa-Gómez Daniel R., Alves Sérgio B. (2000): Temperature and relative humidity requirements for conidiogenesis of Beauveria bassiana (Deuteromycetes: Moniliaceae). Anais da Sociedade Entomológica do Brasil, 29, 515-521  https://doi.org/10.1590/S0301-80592000000300014
 
Shang Yanfang, Feng Peng, Wang Chengshu, Hogan Deborah A. (2015): Fungi That Infect Insects: Altering Host Behavior and Beyond. PLOS Pathogens, 11, e1005037-  https://doi.org/10.1371/journal.ppat.1005037
 
Zimmermann Gisbert (2008): The entomopathogenic fungi Isaria farinosa (formerly Paecilomyces farinosus ) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus ): biology, ecology and use in biological control. Biocontrol Science and Technology, 18, 865-901  https://doi.org/10.1080/09583150802471812
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti