Varied expression pattern of the small heat shock protein gene encoding HSP17.7 against UVA, UVB, Cu2+ and Zn2+ stresses in sunflowerüyük İ., Aras S., Cansaran-Duman D. (2016): Varied expression pattern of the small heat shock protein gene encoding HSP17.7 against UVA, UVB, Cu2+ and Zn2+ stresses in sunflower. Plant Protect. Sci., 52: 99-106.
download PDF
Today, one of the main objectives of agricultural biotechnology area is to find the responsible genes involved in stress response and engineering these genes to improve the plant response mechanisms. Therefore the current study was conducted to gain an insight on the role of HSP17.7 gene, which is a member of sHsps family, in defence mechanism of sunflower (Helianthus annuus L. cv. Confeta –Turkish cultivar) treated with different doses of UVA and UVB (4, 8, 12 and 20 kJ/m2) and concentrations of copper (Cu2+) and zinc (Zn2+) (80, 160, 320, 640, and 1280 µM) heavy metals. Based on our data, it was observed that different doses of UVA and UVB irradiation resulted in increased levels of HSP17.7 mRNA in sunflower plants. The highest levels of these increases (8 and 12 kJ/m2 of UVA) were seen under UVA stress. In contrast to UV stress, only the Cu2+concentration of 1280 µM led to higher expression levels of HSP17.7 gene compared to the control. Besides this, the 1280 µM concentration of Zn2+ treatment was the peak point of increased HSP17.7 mRNA levels for all stress conditions with nearly 8 times more than in the control sample. Negative correlations were found between malondialdehyde (MDA) levels and expression levels of HSP17.7 gene in sunflower plants subjected to current abiotic stress conditions. This correlation might indicate that an effective defence mechanism was in action and it might be concluded that the HSP17.7 gene can be used for identification of cultivars tolerant to UV and high doses of Cu2+ and Zn2+ for molecular breeding studies in the near future. These findings provide evidence of the HSP17.7 gene contribution to abiotic stress response in sunflower and will be helpful for the next studies about stress tolerance improvement in sunflower plants.
AHN YEH-JIN, ZIMMERMAN J. LYNN (2006): Introduction of the carrot HSP17.7 into potato (Solanum tuberosum L.) enhances cellular membrane stability and tuberization in vitro. Plant, Cell and Environment, 29, 95-104
Al-Whaibi Mohamed H. (2011): Plant heat-shock proteins: A mini review. Journal of King Saud University - Science, 23, 139-150
Boyer J. S. (1982): Plant Productivity and Environment. Science, 218, 443-448
Casati Paula, Campi Mabel, Morrow Darren J, Fernandes John F, Walbot Virginia (2011): Transcriptomic, proteomic and metabolomic analysis of UV-B signaling in maize. BMC Genomics, 12, -
Chamseddine Mediouni, Wided Ben Ammar, Guy Houlné, Marie-Edith Chabouté, Fatma Jemal (2009): Cadmium and copper induction of oxidative stress and antioxidative response in tomato (Solanum lycopersicon) leaves. Plant Growth Regulation, 57, 89-99
Cho Un-Haing, Seo Nam-Ho (2005): Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Science, 168, 113-120
Conte C., Mutti I., Puglisi P., Ferrarini A., Regina G., Maestri E., Manmiroli N. (1998): DNA fingerprinting analysis by a PCR based method for monitoring the genotoxic effects of heavy metals pollution. Chemosphere, 37, 2739-2749
Cottee Nicola S., Wilson Iain W., Tan Daniel K. Y., Bange Michael P. (2014): Understanding the molecular events underpinning cultivar differences in the physiological performance and heat tolerance of cotton (Gossypium hirsutum). Functional Plant Biology, 41, 56-
Ding Dong, Zhang Lifang, Wang Hang, Liu Zhijie, Zhang Zuxin, Zheng Yonglian (2009): Differential expression of miRNAs in response to salt stress in maize roots. Annals of Botany, 103, 29-38
Ferguson D. L., Guikema J. A., Paulsen G. M. (1990): Ubiquitin Pool Modulation and Protein Degradation in Wheat Roots during High Temperature Stress. PLANT PHYSIOLOGY, 92, 740-746
Falcone Ferreyra Maria Lorena, Rius Sebastian, Emiliani Julia, Pourcel Lucille, Feller Antje, Morohashi Kengo, Casati Paula, Grotewold Erich (2010): Cloning and characterization of a UV-B-inducible maize flavonol synthase. The Plant Journal, 62, 77-91
Henle K J, Jethmalani S M, Nagle W A (1998): Stress proteins and glycoproteins (Review).. International Journal of Molecular Medicine, , -
Hodges D. Mark, DeLong John M., Forney Charles F., Prange Robert K. (1999): Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207, 604-611
Kim Nak Hyun, Hwang Byung Kook (2015): Pepper Heat Shock Protein 70a Interacts with the Type III Effector AvrBsT and Triggers Plant Cell Death and Immunity. Plant Physiology, 167, 307-322
Koo Hyun Jo, Park Soo Min, Kim Keun Pill, Suh Mi Chung, Lee Mi Ok, Lee Seong-Kon, Xinli Xia, Hong Choo Bong (2015): Small Heat Shock Proteins Can Release Light Dependence of Tobacco Seed during Germination. Plant Physiology, 167, 1030-1038
Kravets Elena A., Zelena Liubov B., Zabara Elena P., Blume Ya. B. (2012): Adaptation strategy of barley plants to UV-B radiation. Emirates Journal of Food and Agriculture, 24, 632-645
Larkindale J., Vierling E. (2007): Core Genome Responses Involved in Acclimation to High Temperature. PLANT PHYSIOLOGY, 146, 748-761
Li H., Luo H., Li D., Hu T., Fu J. (2012): Antioxidant enzyme activity and gene expression in response to lead stress in perennial ryegrass. Journal of the American Society for Horticultural Science, 137: 80–85.
Liu Yunguo, Wang Xin, Zeng Guangming, Qu Dan, Gu Jiajia, Zhou Ming, Chai Liyuan (2007): Cadmium-induced oxidative stress and response of the ascorbate–glutathione cycle in Bechmeria nivea (L.) Gaud. Chemosphere, 69, 99-107
Livak Kenneth J., Schmittgen Thomas D. (2001): Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25, 402-408
Marschner H. (1995): Mineral Nutrition of Higher Plants. 2nd Ed. San Diego, Academic Press.
Martínez-Lüscher J., Morales F., Delrot S., Sánchez-Díaz M., Gomés E., Aguirreolea J., Pascual I. (2013): Short- and long-term physiological responses of grapevine leaves to UV-B radiation. Plant Science, 213, 114-122
Millaleo R, Reyes- Diaz M, Ivanov A.G, Mora M.L, Alberdi M (2010): MANGANESE AS ESSENTIAL AND TOXIC ELEMENT FOR PLANTS: TRANSPORT, ACCUMULATION AND RESISTANCE MECHANISMS. Journal of soil science and plant nutrition, 10, 470-481
Müller-Xing Ralf, Xing Qian, Goodrich Justin (2014): Footprints of the sun: memory of UV and light stress in plants. Frontiers in Plant Science, 5, -
Pareek A., Sopory S.K., Bohnert H.J., Govindjee. (2010): Abiotic Stress Adaptation in Plants. Physiological, Molecular and Genomic Foundation. 1st Ed. Dordrecht, Springer.
Piraino F., Aina R., Palin L., Prato N., Sgorbati S., Santagostino A., Citterio S. (2006): Air quality biomonitoring: Assessment of air pollution genotoxicity in the Province of Novara (North Italy) by using Trifolium repens L. and molecular markers. Science of The Total Environment, 372, 350-359
Pontin Mariela A, Piccoli Patricia N, Francisco Rita, Bottini Ruben, Martinez-Zapater Jose M, Lijavetzky Diego (2010): Transcriptome changes in grapevine (Vitis vinifera L.) cv. Malbec leaves induced by ultraviolet-B radiation. BMC Plant Biology, 10, 224-
Pratt William B, Krishna Priti, Olsen Laura J (2001): Hsp90-binding immunophilins in plants: the protein movers. Trends in Plant Science, 6, 54-58
Rao G. M., Sumita P, Roshni M, Ashtagimatt M. N. (2005): Plasma antioxidant vitamins and lipid peroxidation products in pregnancy induced hypertension. Indian Journal of Clinical Biochemistry, 20, 198-200
Rizhsky Ludmila, Davletova Sholpan, Liang Hongjian, Mittler Ron (2004): The Zinc Finger Protein Zat12 Is Required for Cytosolic Ascorbate Peroxidase 1 Expression during Oxidative Stress in Arabidopsis. Journal of Biological Chemistry, 279, 11736-11743
Ronde J.A. de, Mescht A., van der Cress W.A. (1993): Heat-shock protein synthesis in cotton is cultivar dependent. South African Journal of Plant and Soil, 10: 95–97.
Sairam R.K., Tyagi A. (2004): Physiology and molecular biology of salinity stress tolerance in plants. Current Science, 86: 407–421.
Sato Yutaka, Yokoya Sakiko (2008): Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Reports, 27, 329-334
Savva Demetris (1998): Use of DNA Fingerprinting to Detect Genotoxic Effects. Ecotoxicology and Environmental Safety, 41, 103-106
Seo Jung Soo, Lee Young-Mi, Park Heum Gi, Lee Jae-Seong (2006): The intertidal copepod Tigriopus japonicus small heat shock protein 20 gene (Hsp20) enhances thermotolerance of transformed Escherichia coli. Biochemical and Biophysical Research Communications, 340, 901-908
Shinkle James R., Edwards Meredith C., Koenig Annalise, Shaltz Abigail, Barnes Paul W. (2010): Photomorphogenic regulation of increases in UV-absorbing pigments in cucumber (Cucumis sativus) and Arabidopsis thaliana seedlings induced by different UV-B and UV-C wavebands. Physiologia Plantarum, 138, 113-121
Soydam Aydin S., Büyük İ., Aras S. (2013): Relationships among lipid peroxidation, SOD enzyme activity, and SOD gene expression profile in Lycopersicum esculentum L. exposed to cold stress. Genetics and Molecular Research, 12, 3220-3229
Sun Weining, Van Montagu Marc, Verbruggen Nathalie (2002): Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1577, 1-9
Volkov Roman A., Panchuk Irina I., Mullineaux Phillip M., Schöffl Friedrich (2006): Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Molecular Biology, 61, 733-746
Wang Lili, Jacquet Michel, Renault Georges, Garreau Hervé (2004): Stress induces depletion of Cdc25p and decreases the cAMP producing capability in Saccharomyces cerevisiae. Microbiology, 150, 3383-3391
Wu H.-C., Hsu S.-F., Luo D.-L., Chen S.-J., Huang W.-D., Lur H.-S., Jinn T.-L. (): Recovery of heat shock-triggered released apoplastic Ca2+ accompanied by pectin methylesterase activity is required for thermotolerance in soybean seedlings. Journal of Experimental Botany, 61, 2843-2852
Zahur Muzna, Maqbool Asma, Irfan Muhammad, Barozai Muhammad Younas Khan, Qaiser Uzma, Rashid Bushra, Husnain Tayyab, Riazuddin Shiekh (2009): Functional analysis of cotton small heat shock protein promoter region in response to abiotic stresses in tobacco using Agrobacterium-mediated transient assay. Molecular Biology Reports, 36, 1915-1921
download PDF

© 2019 Czech Academy of Agricultural Sciences