Extracellular ATP: a potential molecule regulating the defence response of plants to biotic stresses – a review

https://doi.org/10.17221/128/2015-PPSCitation:Jia L., Bai J., Guan D., Sun K., Jiao Q., Feng H. (2016): Extracellular ATP: a potential molecule regulating the defence response of plants to biotic stresses – a review. Plant Protect. Sci., 52: 221-228.
download PDF
Although adenosine 5'-triphosphate (ATP) is commonly considered as an intracellular energy currency molecule, animal, plant, and microbial cells can secrete ATP from the cytosol into the extracellular matrix. In plant cells, extracellular ATP (eATP) is found to play important roles in regulating several physiological processes, such as cell growth, development, and death. Interestingly, recent studies suggest that eATP could be a potential molecule required for the regulation of the defence responses of plants to pathogen infection and herbivore attack. This review article summarises the preliminary studies that have been conducted regarding the possible involvement of eATP in plant defence responses to biotic stress. And, we also attempt to address some speculations and theoretical discussions to aid future research in this area.
Abbracchio M. P. (2006): International Union of Pharmacology LVIII: Update on the P2Y G Protein-Coupled Nucleotide Receptors: From Molecular Mechanisms and Pathophysiology to Therapy. Pharmacological Reviews, 58, 281-341  https://doi.org/10.1124/pr.58.3.3
Bodin P., Burnstock G. (2001): Purinergic signalling: ATP release. Neurochemical. Research, 26: 959–969.
Cao Yangrong, Tanaka Kiwamu, Nguyen Cuong T, Stacey Gary (2014): Extracellular ATP is a central signaling molecule in plant stress responses. Current Opinion in Plant Biology, 20, 82-87  https://doi.org/10.1016/j.pbi.2014.04.009
Choi J., Tanaka K., Cao Y., Qi Y., Qiu J., Liang Y., Lee S. Y., Stacey G. (): Identification of a Plant Receptor for Extracellular ATP. Science, 343, 290-294  https://doi.org/10.1126/science.343.6168.290
Chivasa Stephen, Murphy Alex M., Hamilton John M., Lindsey Keith, Carr John P., Slabas Antoni R. (2009): Extracellular ATP is a regulator of pathogen defence in plants. The Plant Journal, 60, 436-448  https://doi.org/10.1111/j.1365-313X.2009.03968.x
Chivasa Stephen, Simon William J., Murphy Alex M., Lindsey Keith, Carr John P., Slabas Antoni R. (2010): The effects of extracellular adenosine 5′-triphosphate on the tobacco proteome. PROTEOMICS, 10, 235-244  https://doi.org/10.1002/pmic.200900454
Clark Greg, Wu Michael, Wat Noel, Onyirimba James, Pham Trieu, Herz Niculin, Ogoti Justin, Gomez Delmy, Canales Arinda A., Aranda Gabriela, Blizard Misha, Nyberg Taylor, Terry Anne, Torres Jonathan, Wu Jian, Roux Stanley J. (2010): Both the stimulation and inhibition of root hair growth induced by extracellular nucleotides in Arabidopsis are mediated by nitric oxide and reactive oxygen species. Plant Molecular Biology, 74, 423-435  https://doi.org/10.1007/s11103-010-9683-7
Coca María, San Segundo Blanca (2010): AtCPK1 calcium-dependent protein kinase mediates pathogen resistance in Arabidopsis. The Plant Journal, 63, 526-540  https://doi.org/10.1111/j.1365-313X.2010.04255.x
Cotrina M.L., Lin J.H., López-García J.C., Naus C.C., Nedergaard M. (2000): ATP-mediated glia signaling. Journal of Neuroscience, 20: 2835–2844.
Delaney T. P., Friedrich L., Ryals J. A. (1995): Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance.. Proceedings of the National Academy of Sciences, 92, 6602-6606  https://doi.org/10.1073/pnas.92.14.6602
Demidchik Vadim, Shang Zhonglin, Shin Ryoung, Thompson Elinor, Rubio Lourdes, Laohavisit Anuphon, Mortimer Jennifer C., Chivasa Stephen, Slabas Antoni R., Glover Beverley J., Schachtman Daniel P., Shabala Sergey N., Davies Julia M. (2009): Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca 2+ channels. The Plant Journal, 58, 903-913  https://doi.org/10.1111/j.1365-313X.2009.03830.x
Dempsey D.A., Klessig D.F. (2012): SOS – too many signals for systemic acquired resistance? Trends in Plant Science, 17: 538–545.
Dichmann S., Idzko M., Zimpfer U., Hofmann C., Ferrari D., Luttmann W., Virchow C. Jr., Di Virgilio F., Norgauer J. (2000): Adenosine triphosphate-induced oxygen radical production and CD11b up-regulation: Ca++ mobilization and actin reorganization in human eosinophils. Blood, 95: 973–978.
Dutta A. K, Okada Y., Sabirov R. Z (2002): Regulation of an ATP-conductive large-conductance anion channel and swelling-induced ATP release by arachidonic acid. The Journal of Physiology, 542, 803-816  https://doi.org/10.1113/jphysiol.2002.019802
Elias T.S. (1983): Extrafloral nectaries: their structure and distribution. In: Bentley B., Elias T.S. (eds): The Biology of Nectaries. New York, Columbia University Press: 174–203.
Foresi N. P., Laxalt A. M., Tonon C. V., Casalongue C. A., Lamattina L. (2007): Extracellular ATP Induces Nitric Oxide Production in Tomato Cell Suspensions. PLANT PHYSIOLOGY, 145, 589-592  https://doi.org/10.1104/pp.107.106518
Gaffney T., Friedrich L., Vernooij B., Negrotto D., Nye G., Uknes S., Ward E., Kessmann H., Ryals J. (1993): Requirement of Salicylic Acid for the Induction of Systemic Acquired Resistance. Science, 261, 754-756  https://doi.org/10.1126/science.261.5122.754
Griffiths Elinor J., Rutter Guy A. (2009): Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1787, 1324-1333  https://doi.org/10.1016/j.bbabio.2009.01.019
Hanley P. J., Musset B., Renigunta V., Limberg S. H., Dalpke A. H., Sus R., Heeg K. M., Preisig-Muller R., Daut J. (): Extracellular ATP induces oscillations of intracellular Ca2+ and membrane potential and promotes transcription of IL-6 in macrophages. Proceedings of the National Academy of Sciences, 101, 9479-9484  https://doi.org/10.1073/pnas.0400733101
Hao L.-H., Wang W.-X., Chen C., Wang Y.-F., Liu T., Li X., Shang Z.-L. (): Extracellular ATP Promotes Stomatal Opening of Arabidopsis thaliana through Heterotrimeric G Protein   Subunit and Reactive Oxygen Species. Molecular Plant, 5, 852-864  https://doi.org/10.1093/mp/ssr095
Heil Martin (2009): Damaged-self recognition in plant herbivore defence. Trends in Plant Science, 14, 356-363  https://doi.org/10.1016/j.tplants.2009.04.002
Heil Martin, Ibarra-Laclette Enrique, Adame-Álvarez Rosa M., Martínez Octavio, Ramirez-Chávez Enrique, Molina-Torres Jorge, Herrera-Estrella Luis, Wu Keqiang (2012): How Plants Sense Wounds: Damaged-Self Recognition Is Based on Plant-Derived Elicitors and Induces Octadecanoid Signaling. PLoS ONE, 7, e30537-  https://doi.org/10.1371/journal.pone.0030537
Heinrich M., Baldwin I. T., Wu J. (): Two mitogen-activated protein kinase kinases, MKK1 and MEK2, are involved in wounding- and specialist lepidopteran herbivore Manduca sexta-induced responses in Nicotiana attenuata. Journal of Experimental Botany, 62, 4355-4365  https://doi.org/10.1093/jxb/err162
Ivanova E.P., Alexeeva Y. V., Pham D.K., Wright J.P., Nicolau D.V. (2006): ATP level variations in heterotrophic bacteria during attachment on hydrophilic and hydrophobic surfaces. International Microbiology, 9: 37–46.
Jouaville L. S., Pinton P., Bastianutto C., Rutter G. A., Rizzuto R. (1999): Regulation of mitochondrial ATP synthesis by calcium: Evidence for a long-term metabolic priming. Proceedings of the National Academy of Sciences, 96, 13807-13812  https://doi.org/10.1073/pnas.96.24.13807
Kawahara Tomoharu, Toyoda Kazuhiro, Kiba Akinori, Miura Akiko, Ohgawara Takako, Yamamoto Mikihiro, Inagaki Yoshishige, Ichinose Yuki, Shiraishi Tomonori (2003): Cloning and characterization of pea apyrases: involvement of PsAPY1 in response to signal molecules from the pea pathogen Mycosphaerella pinodes. Journal of General Plant Pathology, 69, 33-38  https://doi.org/10.1007/s10327-002-0003-1
Kessler André, Baldwin Ian T. (2002): P LANT R ESPONSES TO I NSECT H ERBIVORY : The Emerging Molecular Analysis. Annual Review of Plant Biology, 53, 299-328  https://doi.org/10.1146/annurev.arplant.53.100301.135207
Khakh Baljit S., Burnstock Geoffrey (2009): The Double Life of ATP. Scientific American, 301, 84-92  https://doi.org/10.1038/scientificamerican1209-84
Khakh Baljit S., Alan North R. (2006): P2X receptors as cell-surface ATP sensors in health and disease. Nature, 442, 527-532  https://doi.org/10.1038/nature04886
Kim S.-Y., Sivaguru M., Stacey G. (2006): Extracellular ATP in Plants. Visualization, Localization, and Analysis of Physiological Significance in Growth and Signaling. PLANT PHYSIOLOGY, 142, 984-992  https://doi.org/10.1104/pp.106.085670
Krause Maren, Durner Jörg (2004): Harpin Inactivates Mitochondria in Arabidopsis Suspension Cells. Molecular Plant-Microbe Interactions, 17, 131-139  https://doi.org/10.1094/MPMI.2004.17.2.131
Lazarowski E. R. (2003): Mechanisms of Release of Nucleotides and Integration of Their Action as P2X- and P2Y-Receptor Activating Molecules. Molecular Pharmacology, 64, 785-795  https://doi.org/10.1124/mol.64.4.785
Lim M. H., Wu J., Yao J., Gallardo I. F., Dugger J. W., Webb L. J., Huang J., Salmi M. L., Song J., Clark G., Roux S. J. (): Apyrase Suppression Raises Extracellular ATP Levels and Induces Gene Expression and Cell Wall Changes Characteristic of Stress Responses. PLANT PHYSIOLOGY, 164, 2054-2067  https://doi.org/10.1104/pp.113.233429
Lustig K. D., Shiau A. K., Brake A. J., Julius D. (1993): Expression cloning of an ATP receptor from mouse neuroblastoma cells.. Proceedings of the National Academy of Sciences, 90, 5113-5117  https://doi.org/10.1073/pnas.90.11.5113
Mangiullo Roberto, Gnoni Antonio, Leone Antonella, Gnoni Gabriele V., Papa Sergio, Zanotti Franco (2008): Structural and functional characterization of FoF1-ATP synthase on the extracellular surface of rat hepatocytes. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1777, 1326-1335  https://doi.org/10.1016/j.bbabio.2008.08.003
Martinez Laurent O., Jacquet Sébastien, Esteve Jean-Pierre, Rolland Corinne, Cabezón Elena, Champagne Eric, Pineau Thierry, Georgeaud Valérie, Walker John E., Tercé François, Collet Xavier, Perret Bertrand, Barbaras Ronald (2003): Ectopic β-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature, 421, 75-79  https://doi.org/10.1038/nature01250
Menke F. L.H. (2004): Silencing of the Mitogen-Activated Protein Kinase MPK6 Compromises Disease Resistance in Arabidopsis. THE PLANT CELL ONLINE, 16, 897-907  https://doi.org/10.1105/tpc.015552
Mizumoto Norikatsu, Kumamoto Tadashi, Robson Simon C., Sévigny Jean, Matsue Hiroyuki, Enjyoji Keiichi, Takashima Akira (): CD39 is the dominant Langerhans cell–associated ecto-NTPDase: Modulatory roles in inflammation and immune responsiveness. Nature Medicine, 8, 358-365  https://doi.org/10.1038/nm0402-358
Möhlmann T., Steinebrunner I., Neuhaus, E. (2014): Nucleotides and nucleosides: transport, metabolism, and signaling function of extracellular ATP. In: Lüttge U., Beyschlag W., Cushman J. (eds): Progress in Botany Progressin Botany. Berlin, Springer: 119–144.
Moser T. L., Stack M. S., Asplin I., Enghild J. J., Hojrup P., Everitt L., Hubchak S., Schnaper H. W., Pizzo S. V. (1999): Angiostatin binds ATP synthase on the surface of human endothelial cells. Proceedings of the National Academy of Sciences, 96, 2811-2816  https://doi.org/10.1073/pnas.96.6.2811
Mur Luis A. J., Prats Elena, Pierre Sandra, Hall Michael A., Hebelstrup Kim H. (2013): Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways. Frontiers in Plant Science, 4, -  https://doi.org/10.3389/fpls.2013.00215
Norman C. (2004): Salicylic Acid Is an Uncoupler and Inhibitor of Mitochondrial Electron Transport. PLANT PHYSIOLOGY, 134, 492-501  https://doi.org/10.1104/pp.103.031039
Reichler S. A., Torres J., Rivera A. L., Cintolesi V. A., Clark G., Roux S. J. (): Intersection of two signalling pathways: extracellular nucleotides regulate pollen germination and pollen tube growth via nitric oxide. Journal of Experimental Botany, 60, 2129-2138  https://doi.org/10.1093/jxb/erp091
Riewe D., Grosman L., Fernie A. R., Zauber H., Wucke C., Geigenberger P. (2008): A Cell Wall-Bound Adenosine Nucleosidase is Involved in the Salvage of Extracellular ATP in Solanum tuberosum. Plant and Cell Physiology, 49, 1572-1579  https://doi.org/10.1093/pcp/pcn127
Robin Guillaume P., Ortiz Erika, Szurek Boris, Brizard Jean-Paul, Koebnik Ralf (2014): Comparative proteomics reveal new HrpX-regulated proteins of Xanthomonas oryzae pv. oryzae. Journal of Proteomics, 97, 256-264  https://doi.org/10.1016/j.jprot.2013.04.010
Ryals J. A. (): Systemic Acquired Resistance. THE PLANT CELL ONLINE, 8, 1809-1819  https://doi.org/10.1105/tpc.8.10.1809
Shah Jyoti, Zeier Jürgen (2013): Long-distance communication and signal amplification in systemic acquired resistance. Frontiers in Plant Science, 4, -  https://doi.org/10.3389/fpls.2013.00030
Sheppard Terry L. (2014): Unfolded protein response: Letting go of stress. Nature Chemical Biology, 10, 877-877  https://doi.org/10.1038/nchembio.1676
Song C. J. (2006): Extracellular ATP Induces the Accumulation of Superoxide via NADPH Oxidases in Arabidopsis. PLANT PHYSIOLOGY, 140, 1222-1232  https://doi.org/10.1104/pp.105.073072
Sueldo Daniela J., Foresi Noelia P., Casalongué Claudia A., Lamattina Lorenzo, Laxalt Ana M. (2010): Phosphatidic acid formation is required for extracellular ATP-mediated nitric oxide production in suspension-cultured tomato cells. New Phytologist, 185, 909-916  https://doi.org/10.1111/j.1469-8137.2009.03165.x
Sun J., Zhang C.L., Deng S.R., Lu C.F., Shen X., Zhou X.Y., Zheng X.J., Hu Z.M., Chen S.L. (2012a): An ATP signalling pathway in plant cells: extracellular ATP triggers programmed cell death in Populus euphratica. Plant Cell and Environment, 35: 893–916.
Sun Jian, Zhang Xuan, Deng Shurong, Zhang Chunlan, Wang Meijuan, Ding Mingquan, Zhao Rui, Shen Xin, Zhou Xiaoyang, Lu Cunfu, Chen Shaoliang, Bassham Diane (2012): Extracellular ATP Signaling Is Mediated by H2O2 and Cytosolic Ca2+ in the Salt Response of Populus euphratica Cells. PLoS ONE, 7, e53136-  https://doi.org/10.1371/journal.pone.0053136
Tanaka K., Gilroy S., Jones A.M., Stacey G. (2010a): Extracellular ATP signaling in plants. Trends in Cell Biology, 20: 601–608.
Tanaka K, Swanson S.J., Gilroy S., Stacey G. (2010b): Extracellular nucleotides elicit cytosolic free calcium oscillations in Arabidopsis. Plant Physiology, 154: 705–719.
Tanaka Kiwamu, Choi Jeongmin, Cao Yangrong, Stacey Gary (2014): Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants. Frontiers in Plant Science, 5, -  https://doi.org/10.3389/fpls.2014.00446
Thomas C. (): A Role for Ectophosphatase in Xenobiotic Resistance. THE PLANT CELL ONLINE, 12, 519-534  https://doi.org/10.1105/tpc.12.4.519
Tuteja N., Sopory S.K. (2008): Chemical signaling under abiotic stress environment in plants. Plant Signaling & Behavior, 3: 525–536.
Wu J., Hettenhausen C., Schuman M. C., Baldwin I. T. (2008): A Comparison of Two Nicotiana attenuata Accessions Reveals Large Differences in Signaling Induced by Oral Secretions of the Specialist Herbivore Manduca sexta. PLANT PHYSIOLOGY, 146, 927-939  https://doi.org/10.1104/pp.107.114785
Wu S.-J., Wu J.-Y. (2008): Extracellular ATP-induced NO production and its dependence on membrane Ca2+ flux in Salvia miltiorrhiza hairy roots. Journal of Experimental Botany, 59, 4007-4016  https://doi.org/10.1093/jxb/ern242
Wu Shuang, Peiffer Michelle, Luthe Dawn S., Felton Gary W., Feldlaufer Mark F. (2012): ATP Hydrolyzing Salivary Enzymes of Caterpillars Suppress Plant Defenses. PLoS ONE, 7, e41947-  https://doi.org/10.1371/journal.pone.0041947
Yegutkin Gennady, Bodin Philippe, Burnstock Geoffrey (2000): Effect of shear stress on the release of soluble ecto-enzymes ATPase and 5′-nucleotidase along with endogenous ATP from vascular endothelial cells. British Journal of Pharmacology, 129, 921-926  https://doi.org/10.1038/sj.bjp.0703136
Zeng Weiqing, Melotto Maeli, He Sheng Yang (2010): Plant stomata: a checkpoint of host immunity and pathogen virulence. Current Opinion in Biotechnology, 21, 599-603  https://doi.org/10.1016/j.copbio.2010.05.006
Zhang S., Klessig D. F. (1998): The tobacco wounding-activated mitogen-activated protein kinase is encoded by SIPK. Proceedings of the National Academy of Sciences, 95, 7225-7230  https://doi.org/10.1073/pnas.95.12.7225
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti