Evaluation of genetic and induced resistance phenomena in cucumbers against the root-knot nematode (Meloidogyne incognita)

https://doi.org/10.17221/130/2021-PPSCitation:

Gulzar R.M.A., Rehman A.U., Umar U.U.D., Shahid M., Khan M.F. (2022): Evaluation of genetic and induced resistance phenomena in cucumbers against the root-knot nematode (Meloidogyne incognita). Plant Protect. Sci., 58: 338–350.

download PDF

Meloidogyne spp. is an important pest of cucurbits in tunnel farming of vegetables in Pakistan. A cucumber germplasm was evaluated for resistance against the root-knot nematode (RKN, Meloidogyne incognita) based on the number of galls and egg masses recorded under glass house conditions. All the cucumber accessions showed varying responses towards the RKN inoculation. Out of the fifteen cucumber lines, two were found to be moderately susceptible to M. incognita, ten were susceptible while the other three were highly susceptible. For the management of the nematodes, resistance was induced in a highly susceptible cucumber accession (28294) by the application (both drench and foliar) of elicitors, i.e., salicylic acid (SA) and benzothiadiazole (BTH). The application of SA and BTH significantly enhanced the defence mechanism of the cucumber plants when compared to the control. Increased enzymatic activities in the cucumber plants as the result of the elicitor applications were determined through spectrophotometer to correlate the induced resistance. There was a significant increase in the enzymatic activities when compared to the control in the cucumber plants, which ultimately enhanced the resistance as there was a decrease in the number of galls and egg masses per plant. The enzymatic antioxidant activity was also found to increase in response to the nematode infection. Both SA and BTH were reported to play pivotal roles in inducing resistance in cucumber plants against M. incognita.

References:
Abad P., Favery B., Rosso M.N., Castagnone-Sereno P. (2003): Root-knot nematode parasitism and host response: Molecular basis of a sophisticated interaction. Molecular Plant Pathology, 4: 217–224. https://doi.org/10.1046/j.1364-3703.2003.00170.x
 
Achuo A.E., Audenaert K., Meziane H., Höfte M. (2002): The SA-dependent defense pathway is active against different pathogens in tomato and tobacco. Mededelingen (Rijksuniversiteit te Gent. Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen), 67: 149–157.
 
Aebi H. (1984): Catalase in vitro. In: Jura N., Murphy J.M. (eds). Methods in Enzymology. Waltham, Elsevier Academic Press: 121–126.
 
Anwar S.A., Zia A., Hussain M., Kamran M. (2007): Host susceptibility of selected plants to Meloidogyne incognita in the Punjab, Pakistan. International Journal of Nematology, 17: 144–150.
 
Bajestani M.S., Moghadam E.M., Aghnoum R., Rohani H. (2019): Genotypic and biochemical variation in the response of barley to the Root-knot nematode (Meloidogyne javanica) at seedling stage. Pakistan Journal of Phytopathology, 31: 7–17. https://doi.org/10.33866/phytopathol.031.01.0476
 
Bello T.T., Coyne D.L., Fourie H. (2021): Reproduction potential of Nigerian Meloidogyne spp. and the response of six commercial watermelon cultivars to predominant species. Journal of Plant Diseases and Protection, 128: 831–842.  https://doi.org/10.1007/s41348-021-00446-x
 
Bradford M.M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Analytical Biochemistry, 72: 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
 
Burketová L., Šindelářová M., Šindelář L. (1999): Benzothiadiazole as an inducer of β-1,3-glucanase and chitinase isozymes in sugar beet. Biologia Plantarum, 42: 279–287. https://doi.org/10.1023/A:1002172921426
 
Chance B., Maehly A.C. (1955): Assay of catalase and peroxidase. Methods in Enzymology, 2: 764–775.
 
Clarke C.R., Vinatzer B.A. (2017): Characterizing the immune-eliciting activity of putative microbe-associated molecular patterns in tomato. In: Shan L., He P. (eds). Plant Pattern Recognition Receptors. Methods and Protocols. New York, Springer: 249–261.
 
Dickerson D.P., Pascholati S.F., Hagerman A.E., Butler L.G., Nicholson R.L. (1984): Phenylalanine ammonia-lyase and hydroxycinnamate CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiology Plant Pathology, 25: 111–123. https://doi.org/10.1016/0048-4059(84)90050-X
 
Eder A.B., Mauro F.B., Carlos B.J., Gilbert E.J., Thales R., Janice D.A.E. (2018): Imaging mass spectrometry of endogenous polypeptides and secondary metabolites from galls induced by root knot nematodes in tomato roots. Journal of Molecular Plant Microbe Interactions, 31: 1048–1059. https://doi.org/10.1094/MPMI-02-18-0049-R
 
Eder R., Consoli E., Krauss J., Dahlin P. (2021): Polysulfides applied as formulated garlic extract to protect tomato plants against the root-knot nematode Meloidogyne incognita. Plants, 10: 394. doi: 10.3390/plants10020394 https://doi.org/10.3390/plants10020394
 
Elekcioglu I.H., Ohnesorge B., Lung G., Uygun N. (1994): Plant parasitic nematodes in the Mediterranean region of Turkey. Nematol Mediterranian, 22: 59–63.
 
Giannopolitis C.N., Ries S.K. (1997): Superoxide dismutase I. Occurrence in higher plants. Plant Physiology, 59: 309–314. https://doi.org/10.1104/pp.59.2.309
 
Holbrook C.C., Knauft D.A., Dickson D.W. (1983): A technique for screening peanut for resistance to Meloidogyne arenaria. Plant Disease, 57: 957–958. https://doi.org/10.1094/PD-67-957
 
Janati S., Houari A., Wifaya A., Essarioui A., Mimouni A., Hormatallah A., Sbaghi M., Dababat A.A., Mokrini F. (2018): Occurrence of the root-knot nematode species in vegetable crops in Souss region of Morocco. The Plant Pathology Journal, 34: 308–315.  https://doi.org/10.5423/PPJ.OA.02.2018.0017
 
Jones J.T., Haegeman A., Danchin E.G., Gaur H.S., Helder J., Jones M.G. (2013): Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 14: 946–961. https://doi.org/10.1111/mpp.12057
 
Kammerhofer N., Radakovic Z., Regis J.M., Dobrev P., Vankova R., Grundler F.M. (2015): Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis. New Phytology, 207: 778–789. https://doi.org/10.1111/nph.13395
 
Kaskavalci G. (2007): Effect of soil solarization and organic amendments treatment for controlling Meloidogyne incognita in tomato cultivars in Western Anatolia. Turkish Journal of Agriculture and Forestry, 31: 159–167.
 
Kassi A.H., Hussain S.I. (1987): Screening of some tomato cultivars for their resistance to Meloidogyne javanica under Iraqi conditions. International Nematology Network Newsletter, 4: 27–29.
 
Kayani M.Z., Mukhtar T., Hussain M.A. (2017): Effects of southern root knot nematode population densities and plant age on growth and yield parameters of cucumber. Crop Protection, 92: 207–212.  https://doi.org/10.1016/j.cropro.2016.09.007
 
Khan M.T., Mukhtar T., Saeed M. (2019): Resistance or susceptibility of eight aubergine cultivars to Meloidogyne javanica. Pakistan Journal of Zoology, 51: 2187–2192. https://doi.org/10.17582/journal.pjz/2019.51.6.2187.2192
 
Kyndt T., Nahar K., Haeck A., Verbeek R., Demeestere K., Gheysen G. (2017): Interplay between carotenoids, abscisic acid and jasmonate guides the compatible rice-Meloidogyne graminicola interaction. Frontiers in Plant Science, 8: 951. doi: 10.3389/fpls.2017.00951 https://doi.org/10.3389/fpls.2017.00951
 
Mandal S. (2010): Induction of phenolics, lignin and key defense enzymes in eggplant (Solanum melongena L.) roots in response to elicitors. African Journal of Biotechnology, 9: 8038–8047. https://doi.org/10.5897/AJB10.984
 
Moghbeli E., Nemati S.H., Aroiee H., Olfati J.A. (2017): Evaluation of resistance, enzymatic response, and phenolic compounds in roots of F1 cucumber hybrids to Fusarium oxysporum f. sp. radicis-cucumerinum. Journal of Horticulture Research, 25: 117–124. https://doi.org/10.1515/johr-2017-0012
 
Molinari S. (2001): Inhibition of H2O2-degrading enzymes in the response of Mi-bearing tomato to root-knot nematodes and salicylic acid treatment. Nematologia Mediterranea, 29: 235–239.
 
Molinari S. (2008): Salicylic acid as an elicitor of resistance to root-knot nematodes in tomato. Acta Horticulture, 789: 119–126. https://doi.org/10.17660/ActaHortic.2008.789.15
 
Moussa F.F., Elgindi D.M., Kheir A.M., Koraiem A.M. (1981): Reaction of certain cucurbit cultivars to nine populations of Meloidogyne incognita. Bulletin of Zoological Society Egypt, 31: 93.
 
Mukhtar T., Kayani M.Z., Hussain M.A. (2013): Response of selected cucumber cultivars to Meloidogyne incognita. Crop Protection, 44: 13–17. https://doi.org/10.1016/j.cropro.2012.10.015
 
Nahar K., Kyndt T., De Vleesschauwer D., Hofte M., Gheysen G. (2011): The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice. Plant Physiology, 157: 305–316. https://doi.org/10.1104/pp.111.177576
 
Nandi B., Nandy R.K., Mukhopadhyay S., Nair G.B., Shimada T., Ghose A.C. (2000): Rapid method for species-specific identification of Vibrio cholerae using primers targeted to the gene of outer membrane protein OmpW. Journal of Clinical Microbiology, 38: 4145–4151.  https://doi.org/10.1128/JCM.38.11.4145-4151.2000
 
Nguyen D.M.C., Seo D.J., Park R.D. (2011): Changes in antioxidative enzyme activities in cucumber plants with regard to biological control of root-knot nematode, Meloidogyne incognita with Cinnamomum cassia crude extracts. Journal of Korean Society and Applied Biological Chemistry, 54: 507–514.
 
Pasqua V., Costantino P., Federico P., Silvana D.L., Alba G.U., Maria T.M. (2018): Changes in lignin biosynthesis and monomer composition in response to benzothiadiazole and root-knot nematode Meloidogyne incognita infection in tomato. Journal of Plant Physiology, 230: 40–50. https://doi.org/10.1016/j.jplph.2018.07.013
 
Punithaveni V., Jansirani P., Sivakumar M. (2015): Screening of cucurbitaceous rootstocks and cucumber scions for root knot nematode resistance (Meloidogyne incognita Kofoid and White). Electronic Journal of Plant Breeding, 6: 486–492.
 
Qi W., Ke C., Haiyan L., Gengrui Z., Weichao F., Changwen C., Xinwei W., Lirong W. (2018): Lignification plays an important role on resistance to root-knot nematode (Meloidogyne incognita) based on contrastive analysis in peach. Scientia Horticulturae, 238: 1–6. https://doi.org/10.1016/j.scienta.2018.03.036
 
Sasanelli N., Konrat A., Migunova V., Toderas I., Iurcu-Straistaru E., Rusu S., Bivol A., Andoni C., Veronico P. (2021): Review on control methods against plant parasitic nematodes applied in southern member states (C Zone) of the European Union. Agriculture, 11: 602. doi: 10.3390/agriculture11070602 https://doi.org/10.3390/agriculture11070602
 
Sasser J.N., Freckman D.W. (1987): World perspective of Nematology. The role of society. In: Veech J.A., Dickson D.W. (eds). Vistas on Nematology: A Commemoration of the Twenty-Fifth Anniversary of the Society of Nematologist. Hyattville, Society of Nematologist, Inc.: 7–14.
 
Sharma S., Sohal B.S. (2010): Foliar spray of benzothiadiazole and salicylic acid on Brassica juncea var. RLM619 to combat Alternaria blight in field trials. Crop Improvement, 31: 87–92.
 
Singh U.B., Singh S., Khan W., Malviya D., Sahu P.K., Chaurasia R., Sharma S.K., Saxena A.K. (2019): Drechslerella dactyloides and Dactylaria brochopaga mediated induction of defense related mediator molecules in tomato plants pre-challenged with Meloidogyne incognita. Indian Phytopathology, 72: 309–320. https://doi.org/10.1007/s42360-019-00132-x
 
Song L., Xu X.C., Wang F.N., Wang Y., Xia X.J., Shi K. (2017): Brassino steroids act as a positive regulator for resistance against root-knot nematode involving respiratory burst oxidase homolog-dependent activation of MAPKs in tomato. Plant Cell Environment, 41: 1113–1125. https://doi.org/10.1111/pce.12952
 
Taylor D.P., Nestscher C. (1974): An improved technique for preparing perennial pattern of Meloidogyne spp. Nematologica, 20: 268–269. https://doi.org/10.1163/187529274X00285
 
Vimala R., Suriachandraselvan M. (2009): Induced resistance in bhendi against powdery mildew by foliar application of salicylic acid. Journal of Biopesticides, 2: 111–114.
 
Walter S.A., Wehner T.C., Barkel K.R. (1993): Root-knot nematode resistance in cucumber and horned cucumber. Horticulture Science, 28: 151–154. https://doi.org/10.21273/HORTSCI.28.2.151
 
Whitehead A.G., Hemming J.R. (1965): A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Annals of Applied Biology, 55: 25–38. https://doi.org/10.1111/j.1744-7348.1965.tb07864.x
 
Wright D.J. (1981): Nematicides: Mode of action and new approaches to chemical control. In: Zuckerman B.M., Rohde R.A. (eds). Plant-Parasitic Nematodes. London and New York, Academic Press: 421–449.
 
Yigezu Wendimu G. (2021): Biology, taxonomy, and management of the root-knot nematode (Meloidogyne incognita) in sweet potato. Advances in Agriculture, 2021: 8820211. doi: 10.1155/2021/8820211 https://doi.org/10.1155/2021/8820211
 
Yuksel H. (1974): Considerations on the state of root knot nematodes (Meloidogyne spp.) in Turkey and their population problems. Journal of Agricultural Faculty of Atatürk University, 5: 83–105.
 
Zieslin N., Ben-Zaken R. (1993): Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant Physiology and Biochemistry, 31: 333–339.
 
Zinovieva S.V., Vasyukova N.I., Udalova Z.V., Gerasimova N.G. (2013): The participation of salicylic and jasmonic acids in genetic and induced resistance of tomato to Meloidogyne incognita. Biology Bulletin, 40: 297–303. https://doi.org/10.1134/S1062359013030126
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti