Sphingolipids of plant pathogenic fungi

https://doi.org/10.17221/131/2020-PPSCitation:

Gharwalová L., Kulišová M., Vasyliuk A., Marešová H., Palyzová A., Nedbalová L., Kolouchová I. (2021): Sphingolipids of plant pathogenic fungi. Plant Protect. Sci., 57: 134–139.

supplementary materialdownload PDF

Glycosphingolipids in filamentous fungi are significant components of the plasma membrane and are vital for different cellular processes, such as growth, morphological transition or signal transduction. Fungal growth inhibitors targeting glycosylinositolphosphoceramide (GIPCs) biosynthesis or antifungal compounds binding to GIPCs present in membranes could present a safe way of preventing fungal growth on crops since GIPCs are not present in mammalian cells. Mass spectrometry-based shotgun lipidomics was used to analyze sphingolipids of 11 fungal strains isolated from plant material. Molecular species with inositol ceramides containing zero to five carbohydrates were identified. Differences in the amount of individual molecular species were influenced by the taxonomic affiliation. All tested strains exhibited a relatively high content (more than 40 mol.%) of GIPCs with three and more saccharides attached to the polar head. It could be assumed that the sphingolipid profiles of the tested plant pathogens would be an adaptation mechanism to antifungal plant defensins.

References:
Buré C., Cacas J.L., Mongrand S., Schmitter J.M. (2014): Characterization of glycosyl inositol phosphoryl ceramides from plants and fungi by mass spectrometry. Analytical and Bioanalytical Chemistry, 406: 995–1010. https://doi.org/10.1007/s00216-013-7130-8
 
Ferket K.K.A., Levery S.B., Park C., Cammue B.P.A., Thevissen K. (2003): Isolation and characterization of Neurospora crassa mutants resistant to antifungal plant defensins. Fungal Genetics and Biology, 40: 176–185. https://doi.org/10.1016/S1087-1845(03)00085-9
 
Fontaine T. (2017): Sphingolipids from the human fungal pathogen Aspergillus fumigatus. Biochimie, 141: 9–15. https://doi.org/10.1016/j.biochi.2017.06.012
 
Glass N.L., Donaldson G.C. (1995): Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61: 1323–1330 https://doi.org/10.1128/AEM.61.4.1323-1330.1995
 
Hrelia P., Fimognari C., Maffei F., Vigagni F., Mesirca R., Pozzetti L., Paolini M., Forti G.C. (1996): The genetic and non-genetic toxicity of the fungicide Vinclozolin. Mutagenesis, 11: 445–453. https://doi.org/10.1093/mutage/11.5.445
 
Kaul K., Lester R.L. (1975): Characterization of inositol-containing phosphosphingolipids from tobacco leaves: Isolation and identification of two novel, major lipids: N-acetylglucosamidoglucuronidoinositol phosphorylceramide and glucosamidoglucuronidoinositol phosphorylceramide. Plant Physiology, 55: 120–129. https://doi.org/10.1104/pp.55.1.120
 
Mandala S.M., Thornton R.A., Milligan J., Rosenbach M., Garcia-Calvo M., Bull H.G., Harris G., Abruzzo G.K., Flattery A.M., Gill C.J. (1998): Rustmicin, a potent antifungal agent, inhibits sphingolipid synthesis at inositol phosphoceramide synthase. Journal of Biological Chemistry, 273: 14942–14949. https://doi.org/10.1074/jbc.273.24.14942
 
Meyer V., Andersen M.R., Brakhage A.A., Braus G.H., Caddick M.X., Cairns T.C., de Vries R.P., Haarmann T., Hansen K., Hertz-Fowler C., Krappmann S., Mortensen U.H., Peñalva M.A., Ram A.F.J., Head R.M. (2016): Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: A white paper. Fungal Biology and Biotechnology, 3: 6. doi: 10.1186/s40694-016-0024-8 https://doi.org/10.1186/s40694-016-0024-8
 
Ohnuki T., Yano T., Takatsu T. (2009): Haplofungins, new inositol phosphorylceramide synthase inhibitors, from Lauriomyces bellulus SANK 26899 II. Structure elucidation. The Journal of Antibiotics, 62: 551–557. https://doi.org/10.1038/ja.2009.73
 
Rehner S.A., Buckley E. (2005): A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia, 97: 84–98.
 
Řezanka T., Kolouchová I., Gharwalová L., Doležalová J., Nedbalová L., Sigler K. (2018): Sphingolipidomics of thermotolerant yeasts. Lipids, 53: 627–639. https://doi.org/10.1002/lipd.12076
 
Takesako K., Kuroda H., Inoue T., Haruna F., Yoshikawa Y., Kato I., Uchida K., Hiratani T., Yamaguchi H. (1993): Biological properties of aureobasidin A, a cyclic depsipeptide antifungal antibiotic. The Journal of Antibiotics, 46: 1414–1420. https://doi.org/10.7164/antibiotics.46.1414
 
Toledo M.S., Levery S.B., Bennion B., Guimaraes L.L., Castle S.A., Lindsey R., Momany M., Park C., Straus A.H., Takahashi H.K. (2007): Analysis of glycosylinositol phosphorylceramides expressed by the opportunistic mycopathogen Aspergillus fumigatus. Journal of Lipid Research, 48: 1801–1824. https://doi.org/10.1194/jlr.M700149-JLR200
 
Toledo M.S., Tagliari L., Suzuki E., Silva C.M., Straus A.H., Takahashi H.K. (2010): Effect of anti-glycosphingolipid monoclonal antibodies in pathogenic fungal growth and differentiation. Characterization of monoclonal antibody MEST-3 directed to Manp α1-3Manp α1-2IPC. BMC Microbiology, 10: 1–12. https://doi.org/10.1186/1471-2180-10-47
 
Trinel P.-A., Maes E., Zanetta J.-P., Delplace F., Coddeville B., Jouault T., Strecker G., Poulain D. (2002): Candida albicans phospholipomannan, a new member of the fungal mannose inositol phosphoceramide family. Journal of Biological Chemistry, 277: 37260–37271. https://doi.org/10.1074/jbc.M202295200
 
Utesch T., de Miguel Catalina A., Schattenberg C., Paege N., Schmieder P., Krause E., Miao Y., McCammon J.A., Meyer V., Jung S. (2018): A computational modeling approach predicts interaction of the antifungal protein AFP from Aspergillus giganteus with fungal membranes via its γ-core motif. mSphere, 3:e00377-18. doi: 10.1128/mSphere.00377-18 https://doi.org/10.1128/mSphere.00377-18
 
White T.J., Bruns T.D., Lee S., Taylor J. (1990): Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J. (eds): PCR Protocols: A Guide to Methods and Applications. San Diego, Academic Press: 315–322.
 
Wightwick A., Walters R., Allinson G., Reichman S., Menzies N. (2010): Environmental risks of fungicides used in horticultural production systems. In: Carisse O. (ed.): Fungicides. Rijeka, Intech: 273–304.
 
Yano T., Aoyagi A., Kozuma S., Kawamura Y., Tanaka I., Suzuki Y., Takamatsu Y., Takatsu T., Inukai M. (2007): Pleofungins, novel inositol phosphorylceramide synthase inhibitors, from Phoma sp. SANK 13899. The Journal of Antibiotics, 60: 136–142. https://doi.org/10.1038/ja.2007.13
 
Zakrzewska A., Boorsma A., Delneri D., Brul S., Oliver S.G., Klis F.M. (2007): Cellular processes and pathways that protect Saccharomyces cerevisiae cells against the plasma membrane-perturbing compound chitosan. Eukaryotic Cell, 6: 600–608. https://doi.org/10.1128/EC.00355-06
 
supplementary materialdownload PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti