Genome-wide characterisation, evolution and expression analysis of the leucine-rich repeat receptor-like kinase (LRR-RLK) gene family in cucumbers

https://doi.org/10.17221/131/2021-PPSCitation:

Yu J., Zhang B., Liu S.S., Guo W., Gao Y.F., Sun H.Y. (2022): Genome-wide characterisation, evolution and expression analysis of the leucine-rich repeat receptor-like kinase (LRR-RLK) gene family in cucumbers. Plant Protect. Sci., 58: 125–138.

supplementary materialdownload PDF

The leucine-rich repeat receptor-like kinases (LRR-RLKs) compose a large gene family in plant genomes and implement essential functions in diverse plant physiology progress, including defence against pathogens. However, a systematic analysis of LRR-RLKs has not been accomplished in the economically important cucumber. 189 LRR-RLK genes were identified in the cucumber genome and further divided into 22 subgroups based on the sequence similarities in this study. A total of 31 segmental duplication events and 15 tandem duplication events were present in the genome, indicating that the two duplications were the main driving forces for the expansion of the LRR-RLK family in the cucumber. The expression profile analysis revealed that most of the CsLRR-RLKs were upregulated during a downy mildew infection, and resistant cucumbers comprised more upregulated CsLRR-RLKs than the sensitive lines. Taken together, our results provided information on the LRR-RLK gene family in the cucumber and contributed valuable information for the further research of CsLRR-RLKs.

References:
Alcázar R., García A.V., Kronholm I., de Meaux J., Koornneef M., Parker J.E., Reymond M. (2010): Natural variation at Strubbelig Receptor Kinase3 drives immune-triggered incompatibilities between Arabidopsis thaliana accessions. Nature Genetics, 42: 1135–1139. https://doi.org/10.1038/ng.704
 
Asai T., Tena G., Plotnikova J., Willmann M.R., Chiu W.L., Gomez-Gomez L., Boller T., Ausubel F.M., Sheen J. (2002): MAP kinase signalling cascade in Arabidopsis innate immunity. Nature, 415: 977–983. https://doi.org/10.1038/415977a
 
Bailey T.L., Williams N., Misleh C., Li W.W. (2006): MEME: Discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research, 34: W369–W373. https://doi.org/10.1093/nar/gkl198
 
Burkhardt A., Day B. (2016): Transcriptome and small rnaome dynamics during a resistant and susceptible interaction between cucumber and downy mildew. Plant Genome, 9. doi: 10.3835/plantgenome2015.08.0069 https://doi.org/10.3835/plantgenome2015.08.0069
 
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. (2009): BLAST+: Architecture and applications. BMC Bioinformatics, 10. doi: 10.1186/1471-2105-10-421 https://doi.org/10.1186/1471-2105-10-421
 
Cao Y., Mo W., Li Y., Li W., Dong X., Liu M., Jiang L., Zhang L. (2021): Deciphering the roles of leucine-rich repeat receptor-like protein kinases (LRR-RLKs) in response to Fusarium wilt in the Vernicia fordii (Tung tree). Phytochemistry, 185. doi: 10.1016/j.phytochem.2021.112686 https://doi.org/10.1016/j.phytochem.2021.112686
 
Chinchilla D., Bauer Z., Regenass M., Boller T., Felix G. (2006): The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell, 18: 465–476. https://doi.org/10.1105/tpc.105.036574
 
Expósito R.R., González-Domínguez J., Touriño J. (2018): HSRA: Hadoop-based spliced read aligner for RNA sequencing data. PLoS One, 13. doi: 10.1371/journal.pone.0201483 https://doi.org/10.1371/journal.pone.0201483
 
He X., Feng T., Zhang D., Zhuo R., Liu M. (2019): Identification and comprehensive analysis of the characteristics and roles of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in Sedum alfredii Hance responding to cadmium stress. Ecotoxicology and Environmental Safety, 167: 95–106. https://doi.org/10.1016/j.ecoenv.2018.09.122
 
Hofberger J.A., Zhou B., Tang H., Jones J.D., Schranz M.E. (2014): A novel approach for multi-domain and multi-gene family identification provides insights into evolutionary dynamics of disease resistance genes in core eudicot plants. BMC Genomics, 15. doi: 10.1186/1471-2164-15-966  https://doi.org/10.1186/1471-2164-15-966
 
Hok S., Allasia V., Andrio E., Naessens E., Ribes E., Panabières F., Attard A., Ris N., Clément M., Barlet X., Marco Y., Grill E., Eichmann R., Weis C., Hückelhoven R., Ammon A., Ludwig-Müller J., Voll L.M., Keller H. (2014): The receptor kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 attenuates abscisic acid responses in Arabidopsis. Plant Physiology, 166: 1506–1518.  https://doi.org/10.1104/pp.114.248518
 
Huault E., Laffont C., Wen J., Mysore K.S., Ratet P., Duc G., Frugier F. (2014): Local and systemic regulation of plant root system architecture and symbiotic nodulation by a receptor-like kinase. PLoS Genetics, 10. doi: 10.1371/journal.pgen.1004891  https://doi.org/10.1371/journal.pgen.1004891
 
Hwang S.G., Kim D.S., Jang C.S. (2011): Comparative analysis of evolutionary dynamics of genes encoding leucine-rich repeat receptor-like kinase between rice and Arabidopsis. Genetica, 139: 1023–1032. https://doi.org/10.1007/s10709-011-9604-y
 
Kumar S., Stecher G., Tamura K. (2016): MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33: 1870–1874. https://doi.org/10.1093/molbev/msw054
 
Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J., Higgins D.G. (2007): Clustal W and Clustal X version 2.0. Bioinformatics, 23: 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
 
Li Z., Wang Y., Huang J., Ahsan N., Biener G., Paprocki J., Thelen J.J., Raicu V., Zhao D. (2017): Two SERK receptor-like kinases interact with ems1 to control anther cell fate determination. Plant Physiology, 173: 326–337. https://doi.org/10.1104/pp.16.01219
 
Li X., Salman A., Guo C., Yu J., Cao S., Gao X., Li W., Li H., Guo Y. (2018): Identification and characterization of LRR-RLK family genes in potato reveal their involvement in peptide signaling of cell fate decisions and biotic/abiotic stress responses. Cells, 7. doi: 10.3390/cells7090120 https://doi.org/10.3390/cells7090120
 
Liu Z., Wu Y., Yang F., Zhang Y., Chen S., Xie Q., Tian X., Zhou J.M. (2013): BIK1 interacts with PEPRs to mediate ethylene-induced immunity. Proceedings of the National Academy of Sciences of the United States of America, 110: 6205–6210. https://doi.org/10.1073/pnas.1215543110
 
Liu P.L., Xie L.L., Li P.W., Mao J.F., Liu H., Gao S.M., Shi P.H., Gong J.Q. (2016): Duplication and divergence of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in basal Angiosperm Amborella trichopoda. Frontiers in Plant Science, 7. doi: 10.3389/fpls.2016.01952  https://doi.org/10.3389/fpls.2016.01952
 
Liu P.L., Du L., Huang Y., Gao S.M., Yu M. (2017): Origin and diversification of leucine-rich repeat receptor-like protein kinase (LRR-RLK) genes in plants. BMC Evolutionary Biology, 17. doi: 10.1186/s12862-017-0891-5 https://doi.org/10.1186/s12862-017-0891-5
 
Lozano-Elena F., Caño-Delgado A.I. (2019): Emerging roles of vascular brassinosteroid receptors of the BRI1-like family. Current Opinion in Plant Biology, 51: 105–113. https://doi.org/10.1016/j.pbi.2019.06.006
 
Lu X., Shi H., Ou Y., Cui Y., Chang J., Peng L., Gou X., He K., Li J. (2020): RGF1-RGI1, a peptide-receptor complex, regulates Arabidopsis root meristem development via a MAPK signaling cascade. Molecular Plant, 13: 1594–1607. https://doi.org/10.1016/j.molp.2020.09.005
 
Luu D.D., Joe A., Chen Y., Parys K., Bahar O., Pruitt R., Chan L.J.G., Petzold C.J., Long K., Adamchak C., Stewart V., Belkhadir Y., Ronald P.C. (2019): Biosynthesis and secretion of the microbial sulfated peptide RaxX and binding to the rice Xa21 immune receptor. Proceedings of the National Academy of Sciences of the United States of America, 116: 8525–8534. https://doi.org/10.1073/pnas.1818275116
 
Macho A.P., Zipfel C. (2014): Plant PRRs and the activation of innate immune signaling. Molecular Cell, 54: 263–272. https://doi.org/10.1016/j.molcel.2014.03.028
 
Magalhães D.M., Scholte L.L., Silva N.V., Oliveira G.C., Zipfel C., Takita M.A., De Souza A.A. (2016): LRR-RLK family from two Citrus species: Genome-wide identification and evolutionary aspects. BMC Genomics, 17. doi: 10.1186/s12864-016-2930-9 https://doi.org/10.1186/s12864-016-2930-9
 
Meng J., Yang J., Peng M., Liu X., He H. (2020): Genome-wide characterization, evolution, and expression analysis of the leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene family in Medicago truncatula. Life (Basel), 10. doi: 10.3390/life10090176  https://doi.org/10.3390/life10090176
 
Mishra D., Suri G.S., Kaur G., Tiwari M. (2021): Comprehensive analysis of structural, functional, and evolutionary dynamics of Leucine Rich Repeats-RLKs in Thinopyrum elongatum. International Journal of Biological Macromolecules, 183: 513–527. https://doi.org/10.1016/j.ijbiomac.2021.04.137
 
Miyazawa H., Oka-Kira E., Sato N., Takahashi H., Wu G.J., Sato S., Hayashi M., Betsuyaku S., Nakazono M., Tabata S., Harada K., Sawa S., Fukuda H., Kawaguchi M. (2010): The receptor-like kinase KLAVIER mediates systemic regulation of nodulation and non-symbiotic shoot development in Lotus japonicus. Development, 137: 4317–4325. https://doi.org/10.1242/dev.058891
 
Mott G.A., Thakur S., Smakowska E., Wang P.W., Belkhadir Y., Desveaux D., Guttman D.S. (2016): Genomic screens identify a new phytobacterial microbe-associated molecular pattern and the cognate Arabidopsis receptor-like kinase that mediates its immune elicitation. Genome Biology, 17. doi: 10.1186/s13059-016-0955-7  https://doi.org/10.1186/s13059-016-0955-7
 
Pertea M., Pertea G.M., Antonescu C.M., Chang T.C., Mendell J.T., Salzberg S.L. (2015): StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33: 290–295.  https://doi.org/10.1038/nbt.3122
 
Robinson M.D., McCarthy D.J., Smyth G.K. (2010): edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26: 139–140. https://doi.org/10.1093/bioinformatics/btp616
 
Shiu S.H., Bleecker A.B. (2001): Plant receptor-like kinase gene family: Diversity, function, and signaling. Science Signaling, 2001. doi: 10.1126/stke.2001.113.re22 https://doi.org/10.1126/stke.2001.113.re22
 
Sun X., Wang G.L. (2011): Genome-wide identification, characterization and phylogenetic analysis of the rice LRR-kinases. PLoS One, 6. doi: 10.1371/journal.pone.0016079 https://doi.org/10.1371/journal.pone.0016079
 
Sun Y., Li L., Macho A.P., Han Z., Hu Z., Zipfel C., Zhou J.M., Chai J. (2013): Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science, 342: 624–628. https://doi.org/10.1126/science.1243825
 
Sun J., Li L., Wang P., Zhang S., Wu J. (2017): Genome-wide characterization, evolution, and expression analysis of the leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene family in Rosaceae genomes. BMC Genomics, 18. doi: 10.1186/s12864-017-4155-y https://doi.org/10.1186/s12864-017-4155-y
 
Tanaka K., Choi J., Cao Y., Stacey G. (2014): Extracellular ATP acts as a damage-associated molecular pattern (DAMP) signal in plants. Frontiers in Plant Scienc, 5. doi: 10.3389/fpls.2014.00446 https://doi.org/10.3389/fpls.2014.00446
 
Tiwari M., Pandey V., Singh B., Yadav M., Bhatia S. (2021): Evolutionary and expression dynamics of LRR-RLKs and functional establishment of KLAVIER homolog in shoot mediated regulation of AON in chickpea symbiosis. Genomics, 113: 4313–4326. https://doi.org/10.1016/j.ygeno.2021.11.022
 
Wang Y., Tang H., Debarry J.D., Tan X., Li J., Wang X., Lee T.H., Jin H., Marler B., Guo H., Kissinger J.C., Paterson A.H. (2012): MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40. doi: 10.1093/nar/gkr1293 https://doi.org/10.1093/nar/gkr1293
 
Wang L., Albert M., Einig E., Fürst U., Krust D., Felix G. (2016): The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein. Nature Plants, 2. doi: 10.1038/nplants.2016.185 https://doi.org/10.1038/nplants.2016.185
 
Wang J., Liu S., Li C., Wang T., Zhang P., Chen K. (2017): PnLRR-RLK27, a novel leucine-rich repeats receptor-like protein kinase from the Antarctic moss Pohlia nutans, positively regulates salinity and oxidation-stress tolerance. PLoS One, 12. doi: 10.1371/journal.pone.0172869 https://doi.org/10.1371/journal.pone.0172869
 
Wang H., Chen Y., Wu X., Long Z., Sun C., Wang H., Wang S., Birch P.R.J., Tian Z. (2018): A potato Strubbelig-Receptor family member, StLRPK1, associates with StSERK3A/BAK1 and activates immunity. Journal of Experimental Botany, 69: 5573–5586. https://doi.org/10.1093/jxb/ery310
 
Wang J., Hu T., Wang W., Hu H., Wei Q., Bao C. (2019): Investigation of evolutionary and expressional relationships in the function of the leucine-rich repeat receptor-like protein kinase gene family (LRR-RLK) in the radish (Raphanus sativus L.). Scientific Reports, 9. doi: 10.1038/s41598-019-43516-9 https://doi.org/10.1038/s41598-019-43516-9
 
Wu Y., Xun Q., Guo Y., Zhang J., Cheng K., Shi T., He K., Hou S., Gou X., Li J. (2016): Genome-wide expression pattern analyses of the arabidopsis leucine-rich repeat receptor-like kinases. Molecular Plant, 9: 289–300. https://doi.org/10.1016/j.molp.2015.12.011
 
Yan S., Ning K., Wang Z., Liu X., Zhong Y., Ding L., Zi H., Cheng Z., Li X., Shan H., Lv Q., Luo L., Liu R., Yan L., Zhou Z., Lucas W.J., Zhang X. (2020): CsIVP functions in vasculature development and downy mildew resistance in cucumber. PLoS Biology, 18. doi: 10.1371/journal.pbio.3000671 https://doi.org/10.1371/journal.pbio.3000671
 
Yang D.L., Shi Z., Bao Y., Yan J., Yang Z., Yu H., Li Y., Gou M., Wang S., Zou B., Xu D., Ma Z., Kim J., Hua J. (2017): Calcium pumps and interacting BON1 protein modulate calcium signature, stomatal closure, and plant immunity. Plant Physiology, 175: 424–437. https://doi.org/10.1104/pp.17.00495
 
Yeh Y.H., Panzeri D., Kadota Y., Huang Y.C., Huang P.Y., Tao C.N., Roux M., Chien H.C., Chin T.C., Chu P.W., Zipfel C., Zimmerli L. (2016): The Arabidopsis malectin-like/LRR-RLK IOS1 is critical for BAK1-dependent and BAK1-independent pattern-triggered immunity. Plant Cell, 28: 1701–1721. https://doi.org/10.1105/tpc.16.00313
 
Yu X., Feng B., He P., Shan L. (2017): From chaos to harmony: Responses and signaling upon microbial pattern recognition. Annual Review of Phytopathology, 55: 109–137. https://doi.org/10.1146/annurev-phyto-080516-035649
 
Yuan N., Rai K.M., Balasubramanian V.K., Upadhyay S.K., Luo H., Mendu V. (2018): Genome-wide identification and characterization of LRR-RLKs reveal functional conservation of the SIF subfamily in cotton (Gossypium hirsutum). BMC Plant Biololy, 18. doi: 10.1186/s12870-018-1395-1 https://doi.org/10.1186/s12870-018-1395-1
 
Zan Y., Ji Y., Zhang Y., Yang S., Song Y., Wang J. (2013): Genome-wide identification, characterization and expression analysis of populus leucine-rich repeat receptor-like protein kinase genes. BMC Genomics, 14. doi: 10.1186/1471-2164-14-318 https://doi.org/10.1186/1471-2164-14-318
 
Zhou F., Guo Y., Qiu L.J. (2016): Genome-wide identification and evolutionary analysis of leucine-rich repeat receptor-like protein kinase genes in soybean. BMC Plant Biology, 16. doi: 10.1186/s12870-016-0744-1  https://doi.org/10.1186/s12870-016-0744-1
 
Zhu F., Deng J., Chen H., Liu P., Zheng L., Ye Q., Li R., Brault M., Wen J., Frugier F., Dong J., Wang T. (2020): A CEP peptide receptor-like kinase regulates auxin biosynthesis and ethylene signaling to coordinate root growth and symbiotic nodulation in Medicago truncatula. Plant Cell, 32: 2855–2877.  https://doi.org/10.1105/tpc.20.00248
 
Zipfel C. (2008): Pattern-recognition receptors in plant innate immunity. Current Opinion in Immunology, 20: 10–16.  https://doi.org/10.1016/j.coi.2007.11.003
 
Zipfel C., Kunze G., Chinchilla D., Caniard A., Jones J.D., Boller T., Felix G. (2006): Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell, 125: 749–760. https://doi.org/10.1016/j.cell.2006.03.037
 
supplementary materialdownload PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti