Effects of strip intercropping of canola with faba bean, field pea, garlic, or wheat on control of cabbage aphid and crop yield

https://doi.org/10.17221/132/2019-PPSCitation:

Mollaei M., Fathi S.A.A., Nouri-Ganbalani G., Hassanpour M., Golizadeh A. (2021): Effects of strip intercropping of canola with faba bean, field pea, garlic, or wheat on control of cabbage aphid and crop yield. Plant Protect. Sci., 57: 59–65.

download PDF

The impacts of intercropping of canola (Ca) with faba beans (Fb), field peas (Fp), garlic (G), or wheat (Wh) were evaluated on the cabbage aphid, Brevicoryne brassicae (Linnaeus, 1758), natural enemies and canola yields in row ratios of 3Ca : 3Fb, 3Ca : Fp, 3Ca : 3G, and 3Ca : 3Wh in 2018 and 2019. In both years, the lowest aphid population was recorded in 3Ca : 3G. In 2018, the aphid population was significantly (P < 0.05) lower in 3Ca : 3Fp than in the monoculture, while, in 2019, it was lower in the intercrops compared to the monoculture. Furthermore, none of the intercrops, except 3Ca : 3Fb, showed a significant increase in the predator diversity and parasitism rate. The dry seed weight loss was higher in the monoculture and 3Ca : 3Wh than in the other intercrops. Based upon the obtained results, decreasing the density of the cabbage aphid and increasing the canola yield by intercropping canola with the faba bean, the field pea or garlic is possible with this system. The inferences of these outcomes, which are associated with the integrated pest management (IPM) in canola cropping systems, are discussed.

References:
Afrin S., Latif A., Banu N., Kabir M., Haque S., Ahmed M.E., Tonu N., Ali M. (2017): Intercropping empower reduces insect pests and increases biodiversity in Agro-Ecosystem. Agricultural Sciences, 8: 1120–1134. https://doi.org/10.4236/as.2017.810082
 
Akbar W., Asif M.U., Ismail M., Bux M., Memon R.M. (2017): Management of aphids on canola (Brassica na-pus L.) through cultural practices. Pakistan Entomologist, 39: 27–31.
 
Baidoo P., Mochiah M., Apusiga K. (2012): Onion as a pest control intercrop in organic cabbage (Brassica oleracea) production system in Ghana. Sustainable Agriculture Research, 1: 36–41. https://doi.org/10.5539/sar.v1n1p36
 
Brennan E.B. (2016): Agronomy of strip intercropping broccoli with alyssum for biological control of aphids. Biological Control, 97: 109–119. https://doi.org/10.1016/j.biocontrol.2016.02.015
 
Cahenzli F., Pfiffner L., Daniel C. (2017): Reduced crop damage by self-regulation of aphids in an ecologically enriched, insecticide-free apple orchard. Agronomy for Sustainable Development, 37: 65. https://doi.org/10.1007/s13593-017-0476-0
 
Carruthers J.M., Cook S.M., Wright G.A., Osborne J.L., Clark S.J., Swain J.L., Haughton A.J. (2017): Oilseed rape (Brassica napus) as a resource for farmland insect pollinators: quantifying floral traits in conventional varie-ties and breeding systems. GCB Bioenergy, 9: 1370–1379. https://doi.org/10.1111/gcbb.12438
 
Couëdel A., Alletto L., Tribouillois H., Justes É. (2018): Cover crop crucifer-legume mixtures provide effective nitrate catch crop and nitrogen green manure ecosystem services. Agriculture, Ecosystems & Environment, 254: 50–59.
 
Couëdel A., Kirkegaard J., Alletto L., Justes E. (2019): Crucifer-legume cover crop mixtures for biocontrol: To-ward a new multi-service paradigm. Advances in Agronomy, 157: 55–139.
 
Debra K.R., Misheck D. (2014): Onion (Allium cepa) and garlic (Allium sativum) as pest control intercrops in cabbage based intercrop systems in Zimbabwe. IOSR Journal of Agriculture and Veterinary Science, 7: 13–17. https://doi.org/10.9790/2380-07221317
 
Elsalahy H., Döring T., Bellingrath-Kimura S., Arends D. (2019): Weed suppression in only-legume cover crop mixtures. Agronomy, 9: 648. https://doi.org/10.3390/agronomy9100648
 
Garland J. (1985): Identification of Chrysopidae in Canada, with bionomic notes (Neuroptera). The Canadian Entomologist, 117: 737–762. https://doi.org/10.4039/Ent117737-6
 
Génard T., Etienne P., Diquélou S., Yvin J.C, Revellin C., Laîné P. (2017): Rapeseed-legume intercrops: plant growth and nitrogen balance in early stages of growth and development. Heliyon 3: e00261. doi: 10.1016/j.heliyon.2017.e00261 https://doi.org/10.1016/j.heliyon.2017.e00261
 
Gordon R.D. (1985): The Coccinellidae (Coleoptera) of America north of Mexico. Journal of the New York Entomological Society, 93: 1–912.
 
Gurr G.M., Wratten S.D., Landis D.A., You M. (2017): Habitat management to suppress pest populations: pro-gress and prospects. Annual Review of Entomology, 62: 91–109. https://doi.org/10.1146/annurev-ento-031616-035050
 
Hammer Ø., Harper D.A., Ryan P.D. (2001): PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4: 1–9.
 
Jamont M., Dubois-Pot C., Jaloux B. (2014): Nectar provisioning close to host patches increases parasitoid re-cruitment, retention and host parasitism. Basic and Applied Ecology, 15: 151–160. https://doi.org/10.1016/j.baae.2014.01.001
 
Lian T., Mu Y., Jin J., Ma Q., Cheng Y., Cai Z., Nian H. (2019): Impact of intercropping on the coupling be-tween soil microbial community structure, activity, and nutrient-use efficiencies. PeerJ, 7: e6412. doi: 10.7717/peerj.6412 https://doi.org/10.7717/peerj.6412
 
Liu T.X., Sparks Jr. A.N. (2001): Aphids on cruciferous crops: identification and management. AgriLife Exten-sion, 6109: 1–12.
 
Lopes T., Hatt S., Xu Q., Chen J., Liu Y., Francis F. (2016): Wheat (Triticum aestivum L.)-based intercropping systems for biological pest control. Pest Management Science, 72: 2193–2202. https://doi.org/10.1002/ps.4332
 
Lotfalizadeh H. (2002): Parasitoids of cabbage aphid, Brevicoryne brassicae (L.) (Hom.: Aphididae) in Moghan Region. Agricultural Science (Tabriz), 12: 15–25.
 
Ma L., Li Y., Wu P., Zhao X., Chen X., Gao X. (2019): Effects of varied water regimes on root development and its relations with soil water under wheat/maize intercropping system. Plant and Soil, 439: 113–130. https://doi.org/10.1007/s11104-018-3800-9
 
Magurran A.E. (2004): An index of diversity. Measuring biological diversity. Malden, Blackwell Publishing: 103–108.
 
Mutiga S.K., Gohole L.S., Auma E.O. (2010): Effects of integrating companion cropping and nitrogen applica-tion on the performance and infestation of collards by Brevicoryne brassicae. Entomologia Experimentalis et Applicata, 134: 234–244. https://doi.org/10.1111/j.1570-7458.2009.00952.x
 
Palsson J. (2019): Attract, reward and disrupt: combining habitat manipulation and semiochemicals to enhance pest control in apple orchards. [Ph.D. thesis]. Alnarp, Swedish University of Agricultural Sciences: 65.
 
Ponti L., Altieri M.A., Gutierrez A.P. (2007): Effects of crop diversification levels and fertilization regimes on abundance of Brevicoryne brassicae (L.) and its parasitization by Diaeretiella rapae (M'Intosh) in broccoli. Ag-ricultural and Forest Entomology, 9: 209–214. https://doi.org/10.1111/j.1461-9563.2007.00330.x
 
SAS Institute (2002): SAS/Stat Version 9, SAS Institute Inc, Cary, NC, USA.
 
Stubbs A.E., Falk S.J. (2002): British Hoverflies: An Illustrated Identification Guide. London, British Entomo-logical and Natural History Society.
 
Tiroesele B., Matshela O. (2015): The effect of companion planting on the abundance of cabbage aphid, Brevi-coryne brassicae L., on kale (Brassica oleracea var. acephala). Journal of Plant and Pest Science, 2: 58–65.
 
Zhou H., Chen J., Liu Y., Francis F., Haubruge E., Bragard C., Sun J., Cheng D. (2013a): Influence of garlic intercropping or active emitted volatiles in releasers on aphid and related beneficial in wheat fields in China. Journal of Integrative Agriculture, 12: 467–473. https://doi.org/10.1016/S2095-3119(13)60247-6
 
Zhou H., Chen L., Chen J., Francis F., Haubruge E., Liu Y., Bragard C., Cheng D. (2013b): Adaptation of wheat-pea intercropping pattern in China to reduce Sitobion avenae (Hemiptera: Aphididae) occurrence by pro-moting natural enemies. Agroecology and Sustainable Food Systems, 37: 1001–1016.
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti