Trapping of ambrosia beetles by artificially produced lures in a oak forest T., Holuša J. (2020): Trapping of ambrosia beetles by artificially produced lures in a oak forest. Plant Protect. Sci., 56: 226-230.
download PDF

Ambrosia beetles are among the most damaging forest pests. They are frequently moved intercontinentally and are therefore subject to quarantines. The objective of the current research was to determine whether two commercially produced lures for Trypodendron species also attract central European ambrosia beetles. In 2018, Theysohn® traps were deployed in an oak forest that also contained hornbeam and linden trees. Five pair of traps was baited with the standard synthetic pheromone lures, Trypowit® or Lineatin Kombi®. The 201 adults of ambrosia bark beetles that were trapped were identified to eight species, which represents almost the entire spectrum of oak ambrosia scolytids in the region. Trypodendron domesticum, Xyleborinus saxesenii, and Xyleborus monographus were the most abundant species and exhibited a slight preference for the lure with a higher content of alcohols (Lineatin Kombi®). Both lures attracted T. lineatum because both contain lineatin. The number of beetles trapped was low probably because food sources (damaged or wilting oaks) were rare and because the forest was surrounded by agricultural land and therefore isolated from other oak forests.

Bashford R. (2012): The development of a port surrounds trapping system for the detection of exotic forest insect pests in Australia. New Advances and Contributions to Forestry Research. InTech: 85–100.
Dobie J. (1978): Ambrosia beetles have expensive tastes. Environment Canada Forestry Service, BC-P-24: 1–5.
Dodds K.J. (2011): Effects of habitat type nad trap placement on captures of bark (Coleoptera: Scolytidae) and longhorned (Coleoptera: Cerambycidae) beetles in semiochemical-baited traps. Journal of Economic Entomology, 104: 879–888.
Fiala T. (2019): Kůrovci (Coleoptera: Curculionidae: Scolytinae) v národní přírodní památce Komorní hůrka. Západočeské entomologické listy, 10: 34–39.
Flaherty L., Gutowski J.M.G., Hughes C., Mayo P., Mokrzycki T., Pohl G., Silk P., Van Rooyen K., Sweeney J. (2018): Pheromone-enhanced lure blends and multiple trap heights improve detection of bark and wood-boring beetles potentially moved in solid wood packaging. Journal of Pest Science, 92: 309–325.
Flechtmann C.A.H., Ottati A.L.T., Berisford C.W. (2000): Comparison of four trap types for ambrosia beetles (Coleoptera, Scolytidae) in brazilian Eucalyptus stands. Journal of Economic Entomology, 93: 1701–1707.
Forsse E., Solbreck C. (1985): Migration in the bark beetle Ips typographus L.: duration, timing and height of flight. Zeitschrift für angewandte Entomologie, 100: 47–57.
Franjević M. (2013): Bivoltinism of european hardwood ambrosia beetle Trypodendron domesticum in croatian lowland oak stands of Jastrebarski Lugovi. Šumarski List, 9–10: 495–498.
Franjević M., Šikić Z., Hrašovec B. (2019): First occurence of Xylosandrus germanus (Blandford, 1894) – black steam borer in pheromone baited panel traps and population build up in croatian oak stands. Šumarski List, 5–6: 215–219.
Galko J., Nikolov C., Kimoto T., Kunca A., Gubka A., Vakula J., Zúbrik M., Ostrihoň M. (2014): Attraction of ambrosia beetles to ethanol baited traps in a Slovakia oak forest. Biologia, 69: 1376–1383.
Galko J., Dzurenko M., Ranger C.M., Kulfan J., Kula E., Nikolov C., Zúbrik M., Zach P. (2019): Distribution, habitat preference and management of the invasive ambrosia beetle Xylosandrus germanus (Coleoptera: Curculionidae: Scolytinae) in european forests with an emphasis on the West Carpathians. Forests, 10: 10.
Gossner M.M., Falck K., Weisser W.W. (2019): Effects of management on ambrosia beetles and their antagonists in European beech forests. Forest Ecology and Management, 437: 126–133.
Grégoire J.-C., Piel F., De Proft M., Gilbert M. (2001): Spatial distribution of ambrosia-beetle catches: A possibly useful knowledge to improve mass-trapping. Integrated Pest Management Reviews, 6: 237–242.
Haack R.A. (2001): Intercepted Scolytidae (Coleoptera) at U.S. ports entry: 1985–2000. Integrated Pest Management Reviews, 6: 253–282.
Hanula J.L., Ulyshen M.D., Horn S. (2011): Effect of trap type, trap position, time of year, and beetle density on captures of the Redbay Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae). Journal of Economic Entomology, 104: 501–508.
Holighaus G., Schütz S. (2006): Odours of wood decay as semiochemicals for Trypodendron domesticum L. (Col., Scolytidae). Mitteilungen der deutschen Gesellschaft für allgemeine und angewandte Entomologie, 15: 161–165.
Holuša J., Lukášová K. (2017): Pheromone lures: Easy way to detect Trypodendron species (Coleoptera: Curculionidae). Journal of the Entomological Research Society, 19: 23–30.
Huart O., Rondeux J. (2001): Genèse, évolution et multiples facettes d´une maladie inhabituelle affectant le hêtre en région wallonne. Forêt Wallone, 52: 8–19.
Karunaratne W.S., Kumar V., Pettersson J., Kumar N.S. (2008): Response of the shot-hole borer of tea, Xyleborus fornicatus (Coleoptera: Scolytidae) to conspecifics and plant semiochemicals. Acta Agriculturae Scandinavica Section B – Soil and Plant Science, 58: 345–351.
Knížek M. (1988): Xyleborus alni Niijima, 1909. Acta Entomologica Bohemoslovaca, 85: 396.
Kvamme T. (1986): Trypodendron piceum Strand (Col., Scolytidae): Flight period and response to synthetic pheromones. Fauna Norvegica, Series B, 35: 65–70.
Lindgren B.S., Fraser R.G. (1994): Control of ambrosia beetle damage by mass trapping at a dryland log sorting area in British Columbia. The Forestry Chronicle, 70: 159–163.
Markalas S., Kalapanida M. (1997): Flight pattern of some Scolytidae attracted to flight barrier traps baited with ethanol in oak forest in Greece. Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz, 70: 55–57.
McLean J.A. (1985): Ambrosia beetles: A multimillion dollar degrade problem of sawlogs in coastal British Columbia. The Forestry Chronicle, 61: 295–298.
Moeck H.A. (1970): Ethanol as the primary attractant for the ambrosia beetle Trypodendron lineatum (Coleoptera: Scolytidae). The Canadian Entomologist, 102: 985–995.
Montgomery M.E., Wargo P.M. (1983): Ethanol and other host-derived volatiles as attractants to beetles that bore into hardwoods. Journal of Chemical Ecology, 9: 181–190.
Nilssen A.C. (1984): Long-range aerial dispersal of bark beetles and bark weevils (Coleoptera, Scolytidae and Curculionidae) in northern Finland. Annales Entomologici Fennici, 50: 37–42.
Oszako T. (1998): Oak decline in European forests. In: First EUFORGEN Meeting on Social Broadleaves, October 23-25, 1997, Bordeaux, Germany, France: 145–151.
Petercord R. (2006): Flight period of the broad-leaved ambrosia beetle Trypodendron domesticum L. in Luxembourg and Rhineland-Palatinate between 2002 and 2005. In: Forests Pests: Monitoring – Risk Assessment - Control. IUFRO Working Party 7.03.10 Proceedings of the Workshop “Methodology of Forest Insect and Disease Survey in Central Europe”, September 11-14, 2006, Gmunden, Austria: 213–218.
Pfeffer A. (1989): Kůrovcovití Scolytidae a jádrohlodovití Platypodidae. Praha, Academia: 1–137.
Ranger C.M., Gorzlancyk A.M., Addesso K.M., Oliver J.B., Reding M.E., Schultz P.B., Held D.W. (2014): Conophthorin enhances the electroantennogram and field behavioural response of Xylosandrus germanus (Coleoptera: Curculionidae) to ethanol. Agricultural and Forest Entomology, 16: 327–334.
Rassati D., Faccoli M., Toffolo E.P., Battisti A., Marini L. (2015): Improving the early detection of alien wood-boring beetles in ports and surrounding forests. Journal of Applied Ecology, 52: 50–58.
Rukke B.A. (2000): Effects of habitat fragmentation: increased isolation and reduced habitat size reduces the incidence of dead wood fungi beetles in a fragmented forest landscape. Ecography, 23: 492–502.
Ryall K.L., Fahrig L. (2005): Habitat loss decreases predator-prey ratios in a pine-bark beetle system. Oikos, 110: 265–270.
Salom S.M., McLean J.A. (1989): Influence of wind on the spring flight of Trypodendron lineatum (Oliver) (Coleoptera: Scolytidae) in a second-growth coniferous forest. The Canadian Entomologist, 121(2): 109–119.
Tanasković S., Marjanović M., Gvozdenac S., Popović N., Drašković G. (2016): Sudden occurrence and harmfullness of Xyleborus dispar (Fabricius) on pear. The Serbian Journal of Agricultural Sciences, 65(3–4): 57–62.
Tuncer C., Knížek M., Hulcr J. (2017): Scolytinae in hazelnut orchards of Turkey: clarification of species and identification key (Coleoptera, Curculionidae). ZooKeys, 710: 65–76.
Vakula J., Galko J., Gubka A. (2016): Podkôrny a drevokazný hmyz v letech 1960 – 2014. In: Kunca A., Zúbrik M. (eds.): Výskyt škodlivých činiteľov v lesoch Slovenska v rokoch 1960 – 2014, v roku 2015 a prognóza ich vývoja. Zvolen, Národné lesnícké centrum: 1–139.
Westphal M.I., Browne M., MacKinnon K., Noble I. (2008): The link between international trade and the global distribution of invasive alien species. Biological Invasions, 10: 391–398.
Wylie F.R., Peters B., DeBaar M., King J., Fitzgerald C. (1999): Managing attack by bark and ambrosia beetles (Coleoptera: Scolytidae) in fire-damaged Pinus plantations and salvaged logs in Queensland, Australia. Australian Forestry, 62: 148–153.
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti