Degree-day risk thresholds for predicting the occurrence of Anarsia lineatella, Grapholita molesta and Adoxophyes orana in northern Greece peach orchards

https://doi.org/10.17221/137/2021-PPSCitation:

Damos P.T., Soulopoulou P., Gkouderis D., Monastiridis D., Vrettou M., Sakellariou D., Thomidis T. (2022): Degree-day risk thresholds for predicting the occurrence of Anarsia lineatella, Grapholita molesta and Adoxophyes orana in northern Greece peach orchards. Plant Protect. Sci., 58: 234–244.

download PDF

In the present work, the phenology of the most important peach pests was studied to estimate the risk thresholds to be used in applying an updated automatic pest management decision support system. Particularly, the seasonal occurrence of Anarsia lineatella, Grapholita molesta and Adoxophyes orana was determined during 2018 and 2020 using pheromone traps from April till October in eight peach orchards in the prefecture of Pella in northern Greece. Additionally, the accumulated degree-days (DDs) were calculated for each moth and further related to the seasonal flight patterns to determine the period of which the activity of each species starts as well as the period of the moth population peak. Moth capture data of one more year, 2021, were used to validate the risk threshold predictions. In most cases, the risk threshold predictions were at acceptable levels and especially in forecasting the start and the peak of the first and second flight period of the above three species. The first captures of A. lineatella, G. molesta and A. orana, early in the season were observed at 70, 33 and 362 DDs, respectively (lower temperature thresholds: 11.4 °C, 9.5 °C and 7.2 °C, for A. lineatella, G. molesta and A. orana, respectively, and Biofix: 1st of January in all the cases). The highest number of moth captures of A. lineatella, G. molesta and A. orana were observed at 150.6, 77.9 and 428.7 DDs, while the start of the subsequent second flight was observed at 365, 133 and 362 DDs, respectively. Moreover, the peak of the second moth flight was observed at 511.5, 204.8 and 1 239.5 DDs, for A. lineatella, G. molesta and A. orana, respectively. The current degree-day risk thresholds can be used for the precise timing of pesticides and are a prerequisite to implement automated real time decision support systems at a farm level.

References:
Amat C., Bosch-Serra D., Avilla J., Escudero Colomar L.A. (2021): Different population phenologies of Grapholita molesta (Busck) in two hosts and two nearby regions in the NE of Spain. Insects, 12: 612. doi: 10.3390/insects12070612 https://doi.org/10.3390/insects12070612
 
Balachowsky A.S. (1966): Entomologie Applique a l’Agriculture. Tome II. Lepidoptères. Paris, Masson et Cie. French.
 
Baskerville G., Emin P. (1969): Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology, 50: 515–517. https://doi.org/10.2307/1933912
 
Borchert D.M., Stinner R.E., Walgenbach J.F., Kennedy G.G. (2004): Oriental fruit moth (Lepidoptera: Tortricidae). Phenology and management with methoxyfenozide in North Carolina apples. Journal of Economic Entomology, 97: 1353–1364. https://doi.org/10.1093/jee/97.4.1353
 
Damos P., Savopoulou-Soultani M. (2008): Temperature dependent bionomics and modeling of Anarsia lineatella (Lepidoptera: Gelechiidae) in the laboratory. Journal of Economic Entomology, 101: 1557–1567. https://doi.org/10.1603/0022-0493(2008)101[1557:TBAMOA]2.0.CO;2
 
Damos P., Savopoulou-Soultani M. (2012a): Microlepidoptera of economic significance in fruit production: Challenges, constrains and future perspectives for integrated pest management. In: Cauterrucio L. (ed.). Moths: Types, Ecological Significance and Control Methods. New York, Nova Science: 75–113.
 
Damos P., Savopoulou-Soultani M. (2012b): Temperature-driven models for insect development and vital thermal requirements. Psyche, 2012: 1–13.  https://doi.org/10.1155/2012/123405
 
Damos P., Bonsignore C.P., Gardi F., Avtzis D.N. (2014): Phenological responses and comparative phylogenetic in-sight of Anarsia lineatella and Grapholita molesta between distinct geographical regions within the Mediterranean basin. Journal of Applied Entomology, 138: 528–253. https://doi.org/10.1111/jen.12124
 
Damos P., Colomar L.A., Ioriatti C. (2015): Integrated fruit production and pest management in Europe: The apple case study and how far we are from the original concept? Insects, 6: 626–657. https://doi.org/10.3390/insects6030626
 
Charmillot P.J., Brunner F.J. (1990): Summerfruit totrix, Adoxophyes orana: Lifecycle, warning system and control. Entomologia Hellenica, 7: 17–26. https://doi.org/10.12681/eh.13964
 
IBM Corp. (2019): IBM SPSS Statistics for Windows, version 26.0. Armonk, NY: IBM Corp.
 
Kim D.S., Lee J.H., Yiem M.S. (2000): Spring emergence pattern of Carposina sasakii (Lepidoptera: Carposinidae) in apple orchards in Korea and its forecasting models based on degree-days. Environmental Entomology, 29: 1188–1198. https://doi.org/10.1603/0046-225X-29.6.1188
 
Knight A.L. (2007): Adjusting the phenological model of codling moth (Lepidoptera: Tortricidae) in Washington state apple orchards. Environmental Entomology, 36: 1485–1493. https://doi.org/10.1603/0046-225X(2007)36[1485:ATPMOC]2.0.CO;2
 
Knight A.L. (2010): Effect of sex pheromone and kairomone lures on catches of codling moth. Journal of Entomological Society of British Columbia, 107: 67–74.
 
Kocourek F., Berankova J. (1996): Flight patterns of the peach twig borer, Anarsia lineatella Zell. (Lep., Gelechiidae) in Central Europe as observed using pheromone traps. Anzeige für Schädlingskunde, Pflanzenschutz und Umweltschutz, 69: 84–87. https://doi.org/10.1007/BF01908436
 
Kocourek F., Stará J. (2005): Predictive value of a model of the flight activity of Adoxophyes orana (Lep: Tortricidae). Journal of Pest Science, 78: 205–211. https://doi.org/10.1007/s10340-005-0093-6
 
Kumral N.A., Kovanci B., Akbudak B. (2005): Pheromone trap catches of the olive moth Prays oleae (Bern.) (Lep., Plutellidae) in relation to olive phenology and degree-day models. Journal of Applied Entomology, 129: 375–381. https://doi.org/10.1111/j.1439-0418.2005.00985.x
 
Logan J.A., Wollkind D.J., Hoyt S.C., Tanigoshi L.K. (1976): An analytical model for description of temperature dependent rate phenomena in arthropods. Environmental Entomology, 5: 1133–1140. https://doi.org/10.1093/ee/5.6.1133
 
Milonas G., Savopoulou-Soultani M. (2006): Seasonal abundance and population dynamics of Adoxophyes orana (Lepidoptera: Tortricidae) in northern Greece. International Journal of Pest Management, 52: 45–51. https://doi.org/10.1080/09670870600552562
 
Milonas P.G., Savopoulou-Soultani M., Stavridis D.G. (2001): Day-degree models for predicting the generation time and flight activity of local populations of Lobesia botrana (Den. & Schiff.) (Lep., Tortricidae) in Greece. Journal of Applied Entomology, 125: 515–518.
 
Preti M., Knight A.L., Angeli S. (2020): Improved monitoring of Grapholita molesta (Lepidoptera: Tortricidae) in stone fruit orchards with a pheromone-kairomone combination lure. Insects, 11: 412. doi: 10.3390/insects11070412 https://doi.org/10.3390/insects11070412
 
Prues K.P. (1983): Day-degree methods for pest management. Environmental Entomology, 12: 613–619. https://doi.org/10.1093/ee/12.3.613
 
Rice R.E., Weakley C.V., Jones R.A. (1984): Using degree-days to determine optimum spray timing for the oriental fruit moth (Lepidoptera: Tortricidae). Journal of Economic Entomology, 77: 698–700. https://doi.org/10.1093/jee/77.3.698
 
Samietz J., Graf B., Höhn H., Schaub L., Höpli H.U. (2007): Phenology modeling of major insect pests in fruit orchards from biological basics to decision support: The forecasting tool SOPRA. OEPP/EPPO Bulletin, 37: 255–256. https://doi.org/10.1111/j.1365-2338.2007.01121.x
 
Tomse S., Zezlina I., Milenvoj L. (2004): Dynamics of appearing Cydia molesta and Anarsia lineatella in peach orchards in Slovenia. IOBC/WPRS Bulletin, 27: 49–53.
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti