Sensitivity of Sclerotinia sclerotiorum to strobilurin fungicides in Slovakia

https://doi.org/10.17221/13/2019-PPSCitation:Tóthová M., Hudec K., Tóth P. (2020): Sensitivity of Sclerotinia sclerotiorum to strobilurin fungicides in Slovakia. Plant Protect. Sci., 56: 13-17.
download PDF

Rapeseed isolates of Sclerotinia sclerotiorum (Lib.) de Bary 1884 from Nitra Region of Slovakia were investigated for their in vitro sensitivity to azoxystrobin and picoxystrobin; and determining the EC50 value. The growth of S. sclerotiorum was evaluated on PDA amended with the selected fungicide´s active ingredient at 4 different concentration – 0.08, 0.83, 8.33, and 83.30 ppm. The overall mean EC50 values for azoxystrobin and picoxystrobin were 2.73 ppm and 3.12 ppm respectively. Majority of isolates had a resistance factors up to 20, that suggests the shift in S. sclerotiorum population sensitivity towards the resistance.

References:
Adams P.B., Ayers W.A. (1979): Ecology of Sclerotinia species. Phytopathology, 69: 896–899. https://doi.org/10.1094/Phyto-69-896
 
Attanayake R.N., Carte, P.A., Jiang D., del Río-Mendoza L., Chen W. (2013): Sclerotinia sclerotiorum populations infecting canola from China and the United States are genetically and phenotypically distinct. Phytopathology, 103: 750–761. https://doi.org/10.1094/PHYTO-07-12-0159-R
 
Bečka D., Šimka J., Prokinová E., Cihlář P., Mikšík V., Vašák J., Zukalová H. (2011): Possibilities of improvement of winter rapeseed protection (Brassica napus L.) against Sclerotinia (Sclerotinia sclerotiorum). In: GCIRC: 13th International Rapeseed Congress, abstract book. Prague, International Consultative Research Group on Rapeseed. Prague, Jun 05–09, 2011: 1274–1277.
 
Bradley C.A., Lamey H.A., Endres G.J., Henson R.A., Hanson B.K., McKay K.R., Halvorson M., LeGare D.G., Porter P.M. (2006): Efficacy of fungicides for control of Sclerotinia stem rot of canola. Plant disease, 90: 1129–1134. https://doi.org/10.1094/PD-90-1129
 
Delp C. J., Dekker J. (1985): Fungicide resistance: definitions and use of terms. EPPO Bulletin, 15: 333–335. https://doi.org/10.1111/j.1365-2338.1985.tb00237.x
 
Derbyshire M. C., Denton-Giles M. (2016): The control of sclerotinia stem rot on oilseed rape (Brassica napus): current practices and future opportunities. Plant Pathology, 65: 859–877. https://doi.org/10.1111/ppa.12517
 
Duan Y., Liu S., Ge C., Feng X., Chen C., Zhou M. (2012): In vitro inhibition of Sclerotinia sclerotiorum by mixtures of azoxystrobin, SHAM, and thiram. Pesticide biochemistry and physiology, 103: 101–107. https://doi.org/10.1016/j.pestbp.2012.04.004
 
FRAC (2013): Fungicide Resistance Action Committee Pathogen Risk List. Fungicide Resistance Action Committee, Brussels, Belgium.
 
FRAC (2018): FRAC Code List 2013: Fungicides sorted by mode of action. Fungicide Resistance Action Committee. Available at http://www.frac.info/docs/default-source/publications/frac-code-list/frac_code_list_2018-final.pdf?sfvrsn=6144b9a_2 (accessed Oct 17, 2018).
 
Hailstones D. (2011): Identification and monitoring of resistance in vegetable crops in Australia. [Final Report VG07119.] Sydney: Horticulture Australia Ltd. Available at https://ausveg.com.au/infoveg/infoveg-search/identification-and-monitoring-resistance-in-vegetable-crops-in-australia (accessed November 11, 2018).
 
Huszár J. (2011): Occurrence of Sclerotinia sclerotiorum (Lib) de Bary and Diaporthe (Phomopsis) helianthi Munt.-Cvet. et al. on Iva xanthiifolia Nutt. in Slovak Republic. Plant Protection Science, 47: 52–54. https://doi.org/10.17221/43/2010-PPS
 
Ishii H., Holloman D.W. (2015). Fungicide resistance in plant pathogens. Tokyo, Springer.
 
Leroux P., Gredt M., Leroch M., Walker A. S. (2010): Exploring mechanisms of resistance to respiratory inhibitors in field strains of Botrytis cinerea, the causal agent of gray mold. Applied and Environmental Microbiology, 76: 6615–6630. https://doi.org/10.1128/AEM.00931-10
 
Matysiak R., Jaworska G., Dinter A. (2011): Dupont working for improved disease control strategies in oilseed rape. In: GCIRC: 13th International Rapeseed Congress, abstract book. Prague, International Consultative Research Group on Rapeseed. Prague, Jun 05–09, 2011: 1158–1161.
 
Munoz C.L. (2016): Sensitivity of Sclerotinia sclerotiorum isolates from North Central US to azoxystrobin and boscalid. [Ph.D. Thesis.] North Dakota, North Dakota State University.
 
Pandey D.K., Tripathi N.N., Tripathi R.D., Dixit S.N. (1982): Fungitoxic and phytotoxic properties of the essential oil of Hyptis suaveolens/Fungitoxische und phytotoxische Eigenschaften des ätherischen Öis von Hyptis suaveolens. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection, 1: 344–349.
 
Spitzer T., Matušinsky P., Klemová Z., Kazda J. (2012): Effect of fungicide application date against Sclerotinia sclerotiorum on yield and greening of winter rape. Plant Protection Science, 48: 105–109. https://doi.org/10.17221/12/2012-PPS
 
ÚKSÚP (2019): List of authorized plant protection products and parallel products permitted for parallel trade. Bratislava: Available at http://www.uksup.sk/orp-pripravky-na-ochranu-rastlin-registre-a-zoznamy
 
(accessed May 31, 2019).
 
Williams J. R., Stelfox D. (1980): Influence of farming practices in Alberta on germination and apothecium production of sclerotia of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 2: 169–172. https://doi.org/10.1080/07060668009501435
 
download PDF

© 2020 Czech Academy of Agricultural Sciences