In vitro antibacterial activity of Magnolia tamaulipana against tomato phytopathogenic bacteria

https://doi.org/10.17221/13/2020-PPSCitation:

Arredondo-Valdés R., Chacón-Hernández J.C., Reyes-Zepeda F., Hernández-Castillo F.D., Anguiano-Cabello J.C., Heinz-Castro R.T.Q., Mora-Ravelo S.G. (2020): In vitro antibacterial activity of Magnolia tamaulipana against tomato phytopathogenic bacteria. Plant Protect. Sci., 56: 268–274.

download PDF

The tomato (Solanum lycopersicum Linnaeus) is one of the most important vegetable crops in the world. Still, there are phytopathogenic bacteria that cause a decrease in the yield or can kill the plant, like Pseudomonas syringae pv. tomato (Pst), Xanthomonas vesicatoria (Xv), Clavibacter michiganensis subsp. michiganensis (Cmm), Ralstonia solanacearum (Rs ) and Agrobacterium tumefeciens (At). Synthetic chemical fungicides are primarily used to control plant pathogenic bacteria, but their rapid growth makes them resistant to control. This research work is aimed at assessing the in vitro antibacterial activity of the ethanolic extract of Magnolia tamaulipana Vazquez leaves against Rs, Pst, Xv, Cmm, and At, as well as obtaining information about this plant species' chemical composition. The extract inhibited the growth of the five phytopathogenic bacteria that were tested. The growth inhibition rate ranged between 8.22 and 100%. The inhibitory concentration, IC50(90), required to inhibit 50 (90%) of Pst, Xv, Cmm, and At bacterial growth, was 34.71 (39.62), 23.09 (441.88), 64.75 (176.73) and 97.72 (535.48) ppm, respectively. The phytochemical analysis detected the presence of phenols, tannins, terpenes, saponins. M. tamaulipana ethanolic extract has antimicrobial properties and it must be considered a new control agent.

References:
Abiodun J., Efe-Imafidon A., Benson-Oluwafemi A., Ajibola-Aluko P. (2017): Efficacy of selected plant extracts in the management of tomato early blight disease caused by Alternaria solani. Asian Journal of Plant Pathology, 11: 48–52.
 
Ali A., Rakha M., Shaheen F.A., Srinivasan R. (2019): Resistance of certain wild tomato (Solanum spp.) accessions to Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) based on choice and no-choice bioassays. Florida Entomologist, 102: 544–548. https://doi.org/10.1653/024.102.0311
 
Altemimi A., Lakhssassi N., Baharlouei A., Watson D.G., Lightfoot D.A. (2017): Phytochemicals: extraction, isolation, and identification of bioactive compounds from plant extracts. Plants, 6: 1–23. https://doi.org/10.3390/plants6040042
 
Balestra G.M., Heydari A., Ceccarelli D., Ovidi, E., Quattrucci A. (2009): Antibacterial effect of Allium sativum and Ficus carica extracts on tomato bacterial pathogens. Crop Protection, 28: 807–811.  https://doi.org/10.1016/j.cropro.2009.06.004
 
Baştaş K.K. (2015): Determination of antibacterial efficacies of plant extracts on tomato bacterial speck disease. The Journal of Turkish Phytopathology, 44: 1–10.
 
Chacón-Hernández J.C., Arredondo-Valdés R., Anguiano-Cabello J.C., Ordaz-Silva S., Hernández-Juárez A., Reyes-Zepeda F. (2019): Effect of Magnolia tamaulipana extract on egg laying and food intake of Tetranychus urticae (Acari: Tetranychidae). International Journal of Acarology, 46: 108–110. https://doi.org/10.1080/01647954.2019.1702097
 
Devatha C.P., Thalla A.K., Katte S.Y. (2016): Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. Journal of Cleaner Production, 46: 108–110. https://doi.org/10.1016/j.jclepro.2016.09.019
 
Dieringer G., Cabrera L., Lara M., Loya L., Reyes-Castillo P. (1999): Beetle pollination and floral thermogenicity in Magnolia tamaulipana (Magnoliaceae). International Journal of Plant Sciences, 160: 64–71. https://doi.org/10.1086/314099
 
Escobar M.A., Dandekar, A.M. (2003): Agrobacterium tumefaciens as an agent of disease. Trends in Plant Science, 8: 380–386. https://doi.org/10.1016/S1360-1385(03)00162-6
 
FAO – (2017): FAOSTAT Database on Production, Crops, FAO Statistics Division, Food and Agriculture Organization of the United Nations, Rome. Available at http://www.fao.org/faostat/en/#data/QC (accessed Jan 9, 2020).
 
Finney D.J. (1971): Probit Analysis. London: Cambridge University Press.
 
Jacobo-Salcedo M.R., González-Espindola L.A., Alonso-Castro A.J., González-Martínez M.R., Domínguez F., García-Carranca A. (2011): Antimicrobial activity and cytotoxic effects of Magnolia dealbata and its active compounds. Natural Product Communications, 6: 1121–1124. https://doi.org/10.1177/1934578X1100600818
 
Jasso de Rodríguez D., Trejo-González F.A., Rodríguez-García R., Díaz-Jiménez M.L.V., Sáenz-Galindo A., Hernández-Castillo F.D., Villarreal-Quintanilla J.A., Peña-Ramos F.M. (2015): Antifungal activity in vitro of Rhus muelleri against Fusarium oxysporum f. sp. lycopersici. Industrial Crops and Products, 75(part B): 150–158.  https://doi.org/10.1016/j.indcrop.2015.05.048
 
Moreno-Limón S., González-Solís L.N., Salcedo-Martínez S.M., Cárdenas-Avila M.L., Perales-Ramírez A. (2011): Efecto antifúngico de extractos de gobernadora (Larrea tridentata L.) sobre la inhibición in vitro de Aspergillus flavus y Penicillium sp. Polibotánica, 32: 193–205.
 
Ramírez-Reyes T., Flores-Estévez N., Luna-Rodríguez M., Noa-Carrazana J.C., Sánchez-Velásquez L.R., Trigos-Landa A. (2015a): Extractos crudos de Magnolia schiedeana Schltdl. para el control de bacterias fitopatógenas. Madera y Bosques, 21: 159–164. https://doi.org/10.21829/myb.2015.212452
 
Ramírez-Reyes T., Luna-Rodríguez M., Noa-Carrazana J.C., Díaz-Fleischera F., Sánchez-Velásquez L.R., Flores-Estévez N. (2015b): Influence of season and organ on antibacterial activity of Magnolia dealbata Zucc. against two phytopathogenic bacteria. Chemistry and Ecology, 31: 47–52. https://doi.org/10.1080/02757540.2014.932779
 
Ribeiro-Da Luz B. (2006): Attenuated total reflectance spectroscopy of plant leaves: a tool for ecological and botanical studies. New Phytologist, 172: 305–318. https://doi.org/10.1111/j.1469-8137.2006.01823.x
 
Sahgal G., Ramanathan S., Sasidharan S., Mordi M.N., Ismail S., Mansor S.M. (2009): Phytochemical and antimicrobial activity of Swietenia mahagoni crude methanolic seed extract. Tropical Biomedicine, 26: 274–279.
 
SAS Institute (2002): SAS/STAT User’s Guide. North Carolina, Cary.
 
Schaad W., Jones J.B., Chun W. (2001): Laboratory Guide for Identification of Plant Pathogenic Bacteria, 3rd Ed. St Paul, American Phytopathological Society.
 
Soltani J., Aliabadi A.A. (2013): Antibacterial effects of several plant extracts and essential oils on Xanthomonas arboricola pv. juglandis in vitro. Journal of Essential Oil Bearing Plants, 16: 461–468. https://doi.org/10.1080/0972060X.2013.813246
 
Vázquez-G .J.A. (1994): Magnolia (Magnoliaceae) in Mexico and Central America: a synopsis. Britonia, 46: 1–23. https://doi.org/10.2307/2807454
 
Vásquez-Morales S.G., Flores-Estévez N., Sánchez-Velásquez L.F., Pineda-López M.R., Viveros-Viveros H., Díaz-Fleischer F. (2015): Bioprospecting of botanical insecticides: the case of ethanol extracts of Magnolia schiedeana Schltl. applied to a tephritid fruit fly Anastrepha ludens Loew. Journal of Entomology and Zoology Studies, 3: 1–5.
 
Usman H., Abdulrahman F.I., Usman A. (2009): Qualitative phytochemical screening and in vitro antimicrobial effects of methanol stem bark extract of Ficus thonningii (Moraceae). African Journal of Traditional, Complementary and Alternative Medicines, 6: 289–295.
 
Watanabe K., Ikegami F, Horie S. (2002): Introduction the genus Magnolia. In: Sarker S.D., Maruyama Y. (eds): Magnolia. The Genus Magnolia. New York, Taylor & Francis.
 
Ziv C., Zhao Z., Gao Y. G., Xia Y. (2018): Multifunctional roles of plant cuticle during plant-pathogen interactions. Frontier in Plant Science. 9: 1088. doi: https://doi.org/10.3389/fpls.2018.01088 https://doi.org/10.3389/fpls.2018.01088
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti