Phages of phytopathogenic bacteria: High potential, but challenging application

Korniienko N., Kharina A., Budzanivska I., Burketová L., Kalachova T. (2022): Phages of phytopathogenic bacteria: High potential, but challenging application. Plant Protect. Sci., 58: 81–91.

download PDF

Phytopathogenic bacteria are one of the most significant causes of crop yield losses. Until now, the direct treatment of bacterioses was limited to the application of antibacterial compounds or resistance inducers. This is about to change due to the revolutionary discovery of phages. Indeed, bacteriophages look very promising as therapy agents: cheap, self-amplifying, self-eliminating, and safe for the host organism. However, phage therapy of plant diseases remains a “direction with high potential”, which, so far, has very few successful implication cases. Here, we discuss recent advances in phage research, focusing on the challenges associated with the evaluation of phage biological activity, under both laboratory and environmental conditions.

Addy H., Askora A., Kawasaki T., Fujie M., Yamada T. (2012): Utilization of filamentous phage ΦRSM3 to control bacterial wilt caused by Ralstonia solanacearum. Plant Disease, 96: 1204–1209.
Adriaenssens E.M., Van Vaerenbergh J., Vandenheuvel D., Dunon V., Ceyssens P.J., De Proft M., Kropinski A.M., Noben J.P., Maes M., Lavigne R. (2012): T4-Related bacteriophage LIMEstone isolates for the control of soft rot on potato caused by Dickeya solani. PLoS One, 7: e33227. doi: 10.1371/journal.pone.0033227
Akbaba M., Ozaktan H. (2021): Evaluation of bacteriophages in the biocontrol of Pseudomonas syringae pv. syringae isolated from cankers on sweet cherry (Prunus avium L.) in Turkey. Egyptian Journal of Biological Pest Control, 31: 35. doi: 10.1186/s41938-021-00385-7
Balogh B., Canteros B.I., Stall R.E., Jones J.B. (2008): Control of citrus canker and citrus bacterial spot with bacteriophages. Plant Disease, 92: 1048–1052.
Balogh B., Jones J.B., Iriarte F.B., Momol M.T. (2010): Phage therapy for plant disease control. Current Pharmaceutical Biotechnology, 11: 48–57.
Boulé J., Sholberg P.L., Lehman S.M., O’gorman D.T., Svircev A.M. (2011): Isolation and characterization of eight bacteriophages infecting Erwinia amylovora and their potential as biological control agents in British Columbia, Canada. Canadian Journal of Plant Pathology, 33: 308–317.
Braga L.P.P., Spor A., Kot W., Breuil M.C., Hansen L.H., Setubal J.C., Philippot L. (2020): Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. Microbiome, 8: 52. doi: 10.1186/s40168-020-00822-z
Brockhurst M.A., Fenton A., Roulston B., Rainey P.B. (2006): The impact of phages on interspecific competition in experimental populations of bacteria. BMC Ecology, 6: 19. doi: 10.1186/1472-6785-6-19
Buttimer C., McAuliffe O., Ross R.P., Hill C., O’Mahony J., Coffey A. (2017): Bacteriophages and bacterial plant diseases. Frontiers in Microbiology, 8: 34. doi: 10.3389/fmicb.2017.00034
Carstens A.B., Djurhuus A.M., Kot W., Hansen L.H. (2019): A novel six-phage cocktail reduces Pectobacterium atrosepticum soft rot infection in potato tubers under simulated storage conditions. FEMS Microbiology Letters, 366: fnz101. doi: 10.1093/femsle/fnz101
Czajkowski R., Ozymko Z., Lojkowska E. (2014): Isolation and characterization of novel soilborne lytic bacteriophages infecting Dickeya spp. biovar 3 (‘D. solani’). Plant Pathology, 63: 758–772.
Czajkowski R., Ozymko Z., Jager V., de Siwinska J., Smolarska A., Ossowicki A., Narajczyk M., Lojkowska E. (2015): Genomic, proteomic and morphological characterization of two novel broad host lytic bacteriophages ΦPD10.3 and ΦPD23.1 infecting pectinolytic Pectobacterium spp. and Dickeya spp. PLoS One, 10: e0119812. doi: 10.1371/journal.pone.0119812
Das M., Bhowmick T.S., Ahern S.J., Young R., Gonzalez C.F. (2015): Control of Pierce’s disease by phage. PLoS One, 10: e0128902. doi: 10.1371/journal.pone.0128902
Frampton R.A., Pitman A.R., Fineran P.C. (2012): Advances in bacteriophage-mediated control of plant pathogens. International Journal of Microbiology, 2012: 326452. doi: 10.1155/2012/326452
Fujiwara A., Fujisawa M., Hamasaki R., Kawasaki T., Fujie M., Yamada T. (2011): Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Applied and Environmental Microbiology, 77: 4155–4162.
Gašić K., Kuzmanović N., Ivanović M., Prokić A., Šević M., Obradović A. (2018): Complete genome of the Xanthomonas euvesicatoria specific bacteriophage KΦ1, its survival and potential in control of pepper bacterial spot. Frontiers in Microbiology, 9: 2021. doi: 10.3389/fmicb.2018.02021
Goyer C. (2005): Isolation and characterization of phages Stsc1 and Stsc3 infecting Streptomyces scabiei and their potential as biocontrol agents. Canadian Journal of Plant Pathology, 27: 210–216.
Hernandez C.A., Koskella B. (2019): Phage resistance evolution in vitro is not reflective of in vivo outcome in a plant-bacteria-phage system. Evolution, 73: 2461–2475.
Hernandez C.A., Salazar A.J., Koskella B. (2020): Bacteriophage-mediated reduction of bacterial speck on tomato seedlings. PHAGE, 1: 205–212.
Ibrahim Y.E., Saleh A.A., Al-Saleh M.A. (2017): Management of asiatic citrus canker under field conditions in Saudi Arabia using bacteriophages and acibenzolar-S-methyl. Plant Disease, 101: 761–765.
Iriarte F.B., Obradović A., Wernsing M.H., Jackson L.E., Balogh B., Hong J.A., Momol M.T., Jones J.B., Vallad G.E. (2012): Soil-based systemic delivery and phyllosphere in vivo propagation of bacteriophages. Bacteriophage, 2: 215–224.
Kassa T. (2021): Bacteriophages against pathogenic bacteria and possibilities for future application in Africa. Infection and Drug Resistance, 14: 17–31.
Kim M.H. (2011): Bacteriophages of Pseudomonas tolaasii for the biological control of brown blotch disease. Journal of the Korean Society for Applied Biological Chemistry, 54: 99–104.
Kimmelshue C., Goggi A.S., Cademartiri R. (2019): The use of biological seed coatings based on bacteriophages and polymers against Clavibacter michiganensis subsp. nebraskensis in maize seeds. Scientific Reports, 9: 17950. doi: 10.1038/s41598-019-54068-3
Kolozsváriné Nagy J., Schwarczinger I., Künstler A., Pogány M., Király L. (2015): Penetration and translocation of Erwinia amylovora-specific bacteriophages in apple – A possibility of enhanced control of fire blight. European Journal of Plant Pathology, 142: 815–827.
Koskella B., Brockhurst M.A. (2014): Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiology Reviews, 38: 916–931.
Kutter E., De Vos D., Gvasalia G., Alavidze Z., Gogokhia L., Kuhl S., Abedon S. (2010): Phage therapy in clinical practice: Treatment of human infections. Current Pharmaceutical Biotechnology, 11: 69–86.
Lallo G.D., Evangelisti M., Mancuso F., Ferrante P., Marcelletti S., Tinari A., Superti F., Migliore L., D’Addabbo P., Frezza D., Scortichini M., Thaller M.C. (2014): Isolation and partial characterization of bacteriophages infecting Pseudomonas syringae pv. actinidiae, causal agent of kiwifruit bacterial canker. Journal of Basic Microbiology, 54: 1210–1221.
Lang J.M., Gent D.H., Schwartz H.F. (2007): Management of Xanthomonas leaf blight of onion with bacteriophages and a plant activator. Plant Disease, 91: 871–878.
Lee S., Vu N.T., Oh E.J., Rahimi-Midani A., Thi T.N., Song Y.R., Hwang I.S., Choi T.J., Oh C.S. (2021): Biocontrol of soft rot caused by Pectobacterium odoriferum with bacteriophage phiPccP-1 in Kimchi cabbage. Microorganisms, 9: 779. doi: 10.3390/microorganisms9040779
Lim J.A. (2013): Biocontrol of Pectobacterium carotovorum subsp. carotovorum using bacteriophage PP1. Journal of Microbiology and Biotechnology, 23: 1147–1153.
Luo D., Li C., Wu Q., Ding Y., Yang M,. Hu Y., Zeng H., Zhang J. (2021): Isolation and characterization of new phage vB_CtuP_A24 and application to control Cronobacter spp. in infant milk formula and lettuce. Food Research International, 141: 110109. doi: 10.1016/j.foodres.2021.110109
McKenna F., El-Tarabily K.A., Hardy G.E.S.J., Dell B. (2001): Novel in vivo use of a polyvalent Streptomyces phage to disinfest Streptomyces scabies-infected seed potatoes. Plant Pathology, 50: 666–675.
Morella N.M., Gomez A.L., Wang G., Leung M.S., Koskella B. (2018): The impact of bacteriophages on phyllosphere bacterial abundance and composition. Molecular Ecology, 27: 2025–2038.
Moye Z.D., Woolston J., Sulakvelidze A. (2018): Bacteriophage applications for food production and processing. Viruses, 10: 205. doi: 10.3390/v10040205
Nagy J.K., Király L., Schwarczinger I. (2012): Phage therapy for plant disease control with a focus on fire blight. Central European Journal of Biology, 7: 1–12.
Obradovic A., Jones J.B., Momol M.T., Balogh B., Olson S.M. (2004): Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Disease, 88: 736–740.
Obradovic A., Jones J.B., Momol M.T., Olson S.M., Jackson L.E., Balogh B., Guven K., Iriarte F.B. (2005): Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Disease, 89: 712–716.
O’Brien S., Kümmerli R., Paterson S., Winstanley C., Brockhurst M.A. (2019): Transposable temperate phages promote the evolution of divergent social strategies in Pseudomonas aeruginosa populations. Proceedings of the Royal Society B: Biological Sciences, 286: 20191794. doi: 10.1098/rspb.2019.1794
Papaianni M., Paris D., Woo S.L., Fulgione A., Rigano M.M., Parrilli E., Tutino M.L., Marra R., Manganiello G., Casillo A., Limone A., Zoina A., Motta A., Lorito M., Capparelli R. (2020): Plant dynamic metabolic response to bacteriophage treatment after Xanthomonas campestris pv. campestris infection. Frontiers in Microbiology, 11: 732. doi: 10.3389/fmicb.2020.00732
Park J., Lee G.M., Kim D., Park D.H., Oh C.S. (2018): Characterization of the lytic bacteriophage phiEaP-8 effective against both Erwinia amylovora and Erwinia pyrifoliae causing severe diseases in apple and pear. Plant Pathology Journal, 34: 445–450.
Pinheiro L.A.M., Pereira C., Barreal M.E., Gallego P.P., Balcão V.M., Almeida A. (2020): Use of phage φ6 to inactivate Pseudomonas syringae pv. actinidiae in kiwifruit plants: In vitro and ex vivo experiments. Applied Microbiology and Biotechnology, 104: 1319–1330.
Pratama A.A., Terpstra J., de Oliveria A.L.M., Salles J.F. (2020): The role of rhizosphere bacteriophages in plant health. Trends in Microbiology, 28: 709–718.
Rabiey M., Roy S.R., Holtappels D., Franceschetti L., Quilty B.J., Creeth R., Sundin G.W., Wagemans J., Lavigne R., Jackson R.W. (2020): Phage biocontrol to combat Pseudomonas syringae pathogens causing disease in cherry. Microbial Biotechnology, 13: 1428–1445.
Ramírez M., Neuman B.W., Ramírez C.A. (2020): Bacteriophages as promising agents for the biological control of Moko disease (Ralstonia solanacearum) of banana. Biological Control, 149: 104238. doi: 10.1016/j.biocontrol.2020.104238
Ranjani P., Gowthami Y., Gnanamanickam S., Palani P. (2018): Bacteriophages: A new weapon for the control of bacterial blight disease in rice caused by Xanthomonas oryzae. Microbiology and Biotechnology Letters, 46: 346–359.
Ravensdale M., Blom T., Gracia-Garza J., Smith R. (2007): Bacteriophages and the control of Erwinia carotovora subsp. carotovora. Canadian Journal of Plant Pathology, 29: 121–130.
Rombouts S., Volckaert A., Venneman S., Declercq B., Vandenheuvel D., Allonsius C.N., Van Malderghem C., Jang H.B., Briers Y., Noben J.P., Klumpp J., Van Vaerenbergh J., Maes M., Lavigne R. (2016): Characterization of novel bacteriophages for biocontrol of bacterial blight in leek caused by Pseudomonas syringae pv. porri. Frontiers in Microbiology, 7: 279. doi: 10.3389/fmicb.2016.00279
Sasaki R., Miyashita S., Ando S., Ito K., Fukuhara T., Takahashi H. (2021): Isolation and characterization of a novel jumbo phage from leaf litter compost and its suppressive effect on rice seedling rot diseases. Viruses, 13: 591. doi: 10.3390/v13040591
Sharma R.S., Nayak S., Malhotra S., Karmakar S., Sharma M., Raiping S., Mishra V. (2019): Rhizosphere provides a new paradigm on the prevalence of lysogeny in the environment. Soil and Tillage Research, 195: 104368. doi: 10.1016/j.still.2019.104368
Song Y.R., Vu N.T., Park J., Hwang I.S., Jeong H.J., Cho Y.S., Oh C.S. (2021): Phage PPPL-1, a new biological agent to control bacterial canker caused by Pseudomonas syringae pv. actinidiae in kiwifruit. Antibiotics, 10: 554. doi: 10.3390/antibiotics10050554
Starr E.P., Nuccio E.E., Pett-Ridge J., Banfield J.F., Firestone M.K. (2019): Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proceedings of the National Academy of Sciences of the United States of America, 116: 25900–25908.
Stonier T., McSharry J., Speitel T. (1967): Agrobacterium tumefaciens Conn. IV. Bacteriophage PB21 and its inhibitory effect on tumor induction. Journal of Virology, 1: 268–273.
Umrao P.D., Kumar V., Kaistha S.D. (2021): Biocontrol potential of bacteriophage φsp1 against bacterial wilt-causing Ralstonia solanacearum in Solanaceae crops. Egyptian Journal of Biological Pest Control, 31: 61. doi: 10.1186/s41938-021-00408-3
Vu N.T., Oh C.S. (2020): Bacteriophage usage for bacterial disease management and diagnosis in plants. The Plant Pathology Journal, 36: 204–217.
Weitz J.S., Wilhelm S.W. (2012): Ocean viruses and their effects on microbial communities and biogeochemical cycles. F1000 Biology Reports, 4: 17. doi: 10.3410/B4-17
Williamson K.E., Fuhrmann J.J., Wommack K.E., Radosevich M. (2017): Viruses in soil ecosystems: An unknown quantity within an unexplored territory. Annual Review of Virology, 4: 201–219.
Yin K., Qiu J.L. (2019): Genome editing for plant disease resistance: Applications and perspectives. Philosophical Transactions of the Royal Society B: Biological Sciences, 374: 20180322. doi: 10.1098/rstb.2018.0322
Zaczek-Moczydłowska M.A., Young G.K., Trudgett J., Plahe C., Fleming C.C., Campbell K., Hanlon R.O. (2020): Phage cocktail containing Podoviridae and Myoviridae bacteriophages inhibits the growth of Pectobacterium spp. under in vitro and in vivo conditions. PLoS One, 15: e0230842. doi: 10.1371/journal.pone.0230842
Zimmerer R.P., Hamilton R.H., Pootjes C. (1966): Isolation and morphology of temperate Agrobacterium tumefaciens bacteriophage. Journal of Bacteriology, 92: 746–750.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti