Phages of phytopathogenic bacteria: High potential, but challenging application

https://doi.org/10.17221/147/2021-PPSCitation:

Korniienko N., Kharina A., Budzanivska I., Burketová L., Kalachova T. (2022): Phages of phytopathogenic bacteria: High potential, but challenging application. Plant Protect. Sci., 58: 81–91.

download PDF

Phytopathogenic bacteria are one of the most significant causes of crop yield losses. Until now, the direct treatment of bacterioses was limited to the application of antibacterial compounds or resistance inducers. This is about to change due to the revolutionary discovery of phages. Indeed, bacteriophages look very promising as therapy agents: cheap, self-amplifying, self-eliminating, and safe for the host organism. However, phage therapy of plant diseases remains a “direction with high potential”, which, so far, has very few successful implication cases. Here, we discuss recent advances in phage research, focusing on the challenges associated with the evaluation of phage biological activity, under both laboratory and environmental conditions.

References:
Addy H., Askora A., Kawasaki T., Fujie M., Yamada T. (2012): Utilization of filamentous phage ΦRSM3 to control bacterial wilt caused by Ralstonia solanacearum. Plant Disease, 96: 1204–1209. https://doi.org/10.1094/PDIS-12-11-1023-RE
 
Adriaenssens E.M., Van Vaerenbergh J., Vandenheuvel D., Dunon V., Ceyssens P.J., De Proft M., Kropinski A.M., Noben J.P., Maes M., Lavigne R. (2012): T4-Related bacteriophage LIMEstone isolates for the control of soft rot on potato caused by Dickeya solani. PLoS One, 7: e33227. doi: 10.1371/journal.pone.0033227 https://doi.org/10.1371/journal.pone.0033227
 
Akbaba M., Ozaktan H. (2021): Evaluation of bacteriophages in the biocontrol of Pseudomonas syringae pv. syringae isolated from cankers on sweet cherry (Prunus avium L.) in Turkey. Egyptian Journal of Biological Pest Control, 31: 35. doi: 10.1186/s41938-021-00385-7 https://doi.org/10.1186/s41938-021-00385-7
 
Balogh B., Canteros B.I., Stall R.E., Jones J.B. (2008): Control of citrus canker and citrus bacterial spot with bacteriophages. Plant Disease, 92: 1048–1052.  https://doi.org/10.1094/PDIS-92-7-1048
 
Balogh B., Jones J.B., Iriarte F.B., Momol M.T. (2010): Phage therapy for plant disease control. Current Pharmaceutical Biotechnology, 11: 48–57.  https://doi.org/10.2174/138920110790725302
 
Boulé J., Sholberg P.L., Lehman S.M., O’gorman D.T., Svircev A.M. (2011): Isolation and characterization of eight bacteriophages infecting Erwinia amylovora and their potential as biological control agents in British Columbia, Canada. Canadian Journal of Plant Pathology, 33: 308–317.  https://doi.org/10.1080/07060661.2011.588250
 
Braga L.P.P., Spor A., Kot W., Breuil M.C., Hansen L.H., Setubal J.C., Philippot L. (2020): Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. Microbiome, 8: 52. doi: 10.1186/s40168-020-00822-z https://doi.org/10.1186/s40168-020-00822-z
 
Brockhurst M.A., Fenton A., Roulston B., Rainey P.B. (2006): The impact of phages on interspecific competition in experimental populations of bacteria. BMC Ecology, 6: 19. doi: 10.1186/1472-6785-6-19  https://doi.org/10.1186/1472-6785-6-19
 
Buttimer C., McAuliffe O., Ross R.P., Hill C., O’Mahony J., Coffey A. (2017): Bacteriophages and bacterial plant diseases. Frontiers in Microbiology, 8: 34. doi: 10.3389/fmicb.2017.00034 https://doi.org/10.3389/fmicb.2017.00034
 
Carstens A.B., Djurhuus A.M., Kot W., Hansen L.H. (2019): A novel six-phage cocktail reduces Pectobacterium atrosepticum soft rot infection in potato tubers under simulated storage conditions. FEMS Microbiology Letters, 366: fnz101. doi: 10.1093/femsle/fnz101 https://doi.org/10.1093/femsle/fnz101
 
Czajkowski R., Ozymko Z., Lojkowska E. (2014): Isolation and characterization of novel soilborne lytic bacteriophages infecting Dickeya spp. biovar 3 (‘D. solani’). Plant Pathology, 63: 758–772.  https://doi.org/10.1111/ppa.12157
 
Czajkowski R., Ozymko Z., Jager V., de Siwinska J., Smolarska A., Ossowicki A., Narajczyk M., Lojkowska E. (2015): Genomic, proteomic and morphological characterization of two novel broad host lytic bacteriophages ΦPD10.3 and ΦPD23.1 infecting pectinolytic Pectobacterium spp. and Dickeya spp. PLoS One, 10: e0119812. doi: 10.1371/journal.pone.0119812 https://doi.org/10.1371/journal.pone.0119812
 
Das M., Bhowmick T.S., Ahern S.J., Young R., Gonzalez C.F. (2015): Control of Pierce’s disease by phage. PLoS One, 10: e0128902. doi: 10.1371/journal.pone.0128902 https://doi.org/10.1371/journal.pone.0128902
 
Frampton R.A., Pitman A.R., Fineran P.C. (2012): Advances in bacteriophage-mediated control of plant pathogens. International Journal of Microbiology, 2012: 326452. doi: 10.1155/2012/326452 https://doi.org/10.1155/2012/326452
 
Fujiwara A., Fujisawa M., Hamasaki R., Kawasaki T., Fujie M., Yamada T. (2011): Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Applied and Environmental Microbiology, 77: 4155–4162.  https://doi.org/10.1128/AEM.02847-10
 
Gašić K., Kuzmanović N., Ivanović M., Prokić A., Šević M., Obradović A. (2018): Complete genome of the Xanthomonas euvesicatoria specific bacteriophage KΦ1, its survival and potential in control of pepper bacterial spot. Frontiers in Microbiology, 9: 2021. doi: 10.3389/fmicb.2018.02021 https://doi.org/10.3389/fmicb.2018.02021
 
Goyer C. (2005): Isolation and characterization of phages Stsc1 and Stsc3 infecting Streptomyces scabiei and their potential as biocontrol agents. Canadian Journal of Plant Pathology, 27: 210–216.  https://doi.org/10.1080/07060660509507218
 
Hernandez C.A., Koskella B. (2019): Phage resistance evolution in vitro is not reflective of in vivo outcome in a plant-bacteria-phage system. Evolution, 73: 2461–2475.  https://doi.org/10.1111/evo.13833
 
Hernandez C.A., Salazar A.J., Koskella B. (2020): Bacteriophage-mediated reduction of bacterial speck on tomato seedlings. PHAGE, 1: 205–212.  https://doi.org/10.1089/phage.2020.0027
 
Ibrahim Y.E., Saleh A.A., Al-Saleh M.A. (2017): Management of asiatic citrus canker under field conditions in Saudi Arabia using bacteriophages and acibenzolar-S-methyl. Plant Disease, 101: 761–765.  https://doi.org/10.1094/PDIS-08-16-1213-RE
 
Iriarte F.B., Obradović A., Wernsing M.H., Jackson L.E., Balogh B., Hong J.A., Momol M.T., Jones J.B., Vallad G.E. (2012): Soil-based systemic delivery and phyllosphere in vivo propagation of bacteriophages. Bacteriophage, 2: 215–224. https://doi.org/10.4161/bact.23530
 
Kassa T. (2021): Bacteriophages against pathogenic bacteria and possibilities for future application in Africa. Infection and Drug Resistance, 14: 17–31. https://doi.org/10.2147/IDR.S284331
 
Kim M.H. (2011): Bacteriophages of Pseudomonas tolaasii for the biological control of brown blotch disease. Journal of the Korean Society for Applied Biological Chemistry, 54: 99–104.  https://doi.org/10.3839/jksabc.2011.014
 
Kimmelshue C., Goggi A.S., Cademartiri R. (2019): The use of biological seed coatings based on bacteriophages and polymers against Clavibacter michiganensis subsp. nebraskensis in maize seeds. Scientific Reports, 9: 17950. doi: 10.1038/s41598-019-54068-3 https://doi.org/10.1038/s41598-019-54068-3
 
Kolozsváriné Nagy J., Schwarczinger I., Künstler A., Pogány M., Király L. (2015): Penetration and translocation of Erwinia amylovora-specific bacteriophages in apple – A possibility of enhanced control of fire blight. European Journal of Plant Pathology, 142: 815–827.  https://doi.org/10.1007/s10658-015-0654-3
 
Koskella B., Brockhurst M.A. (2014): Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiology Reviews, 38: 916–931.  https://doi.org/10.1111/1574-6976.12072
 
Kutter E., De Vos D., Gvasalia G., Alavidze Z., Gogokhia L., Kuhl S., Abedon S. (2010): Phage therapy in clinical practice: Treatment of human infections. Current Pharmaceutical Biotechnology, 11: 69–86. https://doi.org/10.2174/138920110790725401
 
Lallo G.D., Evangelisti M., Mancuso F., Ferrante P., Marcelletti S., Tinari A., Superti F., Migliore L., D’Addabbo P., Frezza D., Scortichini M., Thaller M.C. (2014): Isolation and partial characterization of bacteriophages infecting Pseudomonas syringae pv. actinidiae, causal agent of kiwifruit bacterial canker. Journal of Basic Microbiology, 54: 1210–1221.  https://doi.org/10.1002/jobm.201300951
 
Lang J.M., Gent D.H., Schwartz H.F. (2007): Management of Xanthomonas leaf blight of onion with bacteriophages and a plant activator. Plant Disease, 91: 871–878.  https://doi.org/10.1094/PDIS-91-7-0871
 
Lee S., Vu N.T., Oh E.J., Rahimi-Midani A., Thi T.N., Song Y.R., Hwang I.S., Choi T.J., Oh C.S. (2021): Biocontrol of soft rot caused by Pectobacterium odoriferum with bacteriophage phiPccP-1 in Kimchi cabbage. Microorganisms, 9: 779. doi: 10.3390/microorganisms9040779 https://doi.org/10.3390/microorganisms9040779
 
Lim J.A. (2013): Biocontrol of Pectobacterium carotovorum subsp. carotovorum using bacteriophage PP1. Journal of Microbiology and Biotechnology, 23: 1147–1153.  https://doi.org/10.4014/jmb.1304.04001
 
Luo D., Li C., Wu Q., Ding Y., Yang M,. Hu Y., Zeng H., Zhang J. (2021): Isolation and characterization of new phage vB_CtuP_A24 and application to control Cronobacter spp. in infant milk formula and lettuce. Food Research International, 141: 110109. doi: 10.1016/j.foodres.2021.110109 https://doi.org/10.1016/j.foodres.2021.110109
 
McKenna F., El-Tarabily K.A., Hardy G.E.S.J., Dell B. (2001): Novel in vivo use of a polyvalent Streptomyces phage to disinfest Streptomyces scabies-infected seed potatoes. Plant Pathology, 50: 666–675.  https://doi.org/10.1046/j.1365-3059.2001.00648.x
 
Morella N.M., Gomez A.L., Wang G., Leung M.S., Koskella B. (2018): The impact of bacteriophages on phyllosphere bacterial abundance and composition. Molecular Ecology, 27: 2025–2038.  https://doi.org/10.1111/mec.14542
 
Moye Z.D., Woolston J., Sulakvelidze A. (2018): Bacteriophage applications for food production and processing. Viruses, 10: 205. doi: 10.3390/v10040205 https://doi.org/10.3390/v10040205
 
Nagy J.K., Király L., Schwarczinger I. (2012): Phage therapy for plant disease control with a focus on fire blight. Central European Journal of Biology, 7: 1–12.
 
Obradovic A., Jones J.B., Momol M.T., Balogh B., Olson S.M. (2004): Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Disease, 88: 736–740.  https://doi.org/10.1094/PDIS.2004.88.7.736
 
Obradovic A., Jones J.B., Momol M.T., Olson S.M., Jackson L.E., Balogh B., Guven K., Iriarte F.B. (2005): Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Disease, 89: 712–716.  https://doi.org/10.1094/PD-89-0712
 
O’Brien S., Kümmerli R., Paterson S., Winstanley C., Brockhurst M.A. (2019): Transposable temperate phages promote the evolution of divergent social strategies in Pseudomonas aeruginosa populations. Proceedings of the Royal Society B: Biological Sciences, 286: 20191794. doi: 10.1098/rspb.2019.1794 https://doi.org/10.1098/rspb.2019.1794
 
Papaianni M., Paris D., Woo S.L., Fulgione A., Rigano M.M., Parrilli E., Tutino M.L., Marra R., Manganiello G., Casillo A., Limone A., Zoina A., Motta A., Lorito M., Capparelli R. (2020): Plant dynamic metabolic response to bacteriophage treatment after Xanthomonas campestris pv. campestris infection. Frontiers in Microbiology, 11: 732. doi: 10.3389/fmicb.2020.00732 https://doi.org/10.3389/fmicb.2020.00732
 
Park J., Lee G.M., Kim D., Park D.H., Oh C.S. (2018): Characterization of the lytic bacteriophage phiEaP-8 effective against both Erwinia amylovora and Erwinia pyrifoliae causing severe diseases in apple and pear. Plant Pathology Journal, 34: 445–450.  https://doi.org/10.5423/PPJ.NT.06.2018.0100
 
Pinheiro L.A.M., Pereira C., Barreal M.E., Gallego P.P., Balcão V.M., Almeida A. (2020): Use of phage φ6 to inactivate Pseudomonas syringae pv. actinidiae in kiwifruit plants: In vitro and ex vivo experiments. Applied Microbiology and Biotechnology, 104: 1319–1330.  https://doi.org/10.1007/s00253-019-10301-7
 
Pratama A.A., Terpstra J., de Oliveria A.L.M., Salles J.F. (2020): The role of rhizosphere bacteriophages in plant health. Trends in Microbiology, 28: 709–718.  https://doi.org/10.1016/j.tim.2020.04.005
 
Rabiey M., Roy S.R., Holtappels D., Franceschetti L., Quilty B.J., Creeth R., Sundin G.W., Wagemans J., Lavigne R., Jackson R.W. (2020): Phage biocontrol to combat Pseudomonas syringae pathogens causing disease in cherry. Microbial Biotechnology, 13: 1428–1445.  https://doi.org/10.1111/1751-7915.13585
 
Ramírez M., Neuman B.W., Ramírez C.A. (2020): Bacteriophages as promising agents for the biological control of Moko disease (Ralstonia solanacearum) of banana. Biological Control, 149: 104238. doi: 10.1016/j.biocontrol.2020.104238 https://doi.org/10.1016/j.biocontrol.2020.104238
 
Ranjani P., Gowthami Y., Gnanamanickam S., Palani P. (2018): Bacteriophages: A new weapon for the control of bacterial blight disease in rice caused by Xanthomonas oryzae. Microbiology and Biotechnology Letters, 46: 346–359.  https://doi.org/10.4014/mbl.1807.07009
 
Ravensdale M., Blom T., Gracia-Garza J., Smith R. (2007): Bacteriophages and the control of Erwinia carotovora subsp. carotovora. Canadian Journal of Plant Pathology, 29: 121–130. https://doi.org/10.1080/07060660709507448
 
Rombouts S., Volckaert A., Venneman S., Declercq B., Vandenheuvel D., Allonsius C.N., Van Malderghem C., Jang H.B., Briers Y., Noben J.P., Klumpp J., Van Vaerenbergh J., Maes M., Lavigne R. (2016): Characterization of novel bacteriophages for biocontrol of bacterial blight in leek caused by Pseudomonas syringae pv. porri. Frontiers in Microbiology, 7: 279. doi: 10.3389/fmicb.2016.00279  https://doi.org/10.3389/fmicb.2016.00279
 
Sasaki R., Miyashita S., Ando S., Ito K., Fukuhara T., Takahashi H. (2021): Isolation and characterization of a novel jumbo phage from leaf litter compost and its suppressive effect on rice seedling rot diseases. Viruses, 13: 591. doi: 10.3390/v13040591 https://doi.org/10.3390/v13040591
 
Sharma R.S., Nayak S., Malhotra S., Karmakar S., Sharma M., Raiping S., Mishra V. (2019): Rhizosphere provides a new paradigm on the prevalence of lysogeny in the environment. Soil and Tillage Research, 195: 104368. doi: 10.1016/j.still.2019.104368 https://doi.org/10.1016/j.still.2019.104368
 
Song Y.R., Vu N.T., Park J., Hwang I.S., Jeong H.J., Cho Y.S., Oh C.S. (2021): Phage PPPL-1, a new biological agent to control bacterial canker caused by Pseudomonas syringae pv. actinidiae in kiwifruit. Antibiotics, 10: 554. doi: 10.3390/antibiotics10050554 https://doi.org/10.3390/antibiotics10050554
 
Starr E.P., Nuccio E.E., Pett-Ridge J., Banfield J.F., Firestone M.K. (2019): Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proceedings of the National Academy of Sciences of the United States of America, 116: 25900–25908.  https://doi.org/10.1073/pnas.1908291116
 
Stonier T., McSharry J., Speitel T. (1967): Agrobacterium tumefaciens Conn. IV. Bacteriophage PB21 and its inhibitory effect on tumor induction. Journal of Virology, 1: 268–273. https://doi.org/10.1128/jvi.1.2.268-273.1967
 
Umrao P.D., Kumar V., Kaistha S.D. (2021): Biocontrol potential of bacteriophage φsp1 against bacterial wilt-causing Ralstonia solanacearum in Solanaceae crops. Egyptian Journal of Biological Pest Control, 31: 61. doi: 10.1186/s41938-021-00408-3 https://doi.org/10.1186/s41938-021-00408-3
 
Vu N.T., Oh C.S. (2020): Bacteriophage usage for bacterial disease management and diagnosis in plants. The Plant Pathology Journal, 36: 204–217. https://doi.org/10.5423/PPJ.RW.04.2020.0074
 
Weitz J.S., Wilhelm S.W. (2012): Ocean viruses and their effects on microbial communities and biogeochemical cycles. F1000 Biology Reports, 4: 17. doi: 10.3410/B4-17 https://doi.org/10.3410/B4-17
 
Williamson K.E., Fuhrmann J.J., Wommack K.E., Radosevich M. (2017): Viruses in soil ecosystems: An unknown quantity within an unexplored territory. Annual Review of Virology, 4: 201–219.  https://doi.org/10.1146/annurev-virology-101416-041639
 
Yin K., Qiu J.L. (2019): Genome editing for plant disease resistance: Applications and perspectives. Philosophical Transactions of the Royal Society B: Biological Sciences, 374: 20180322. doi: 10.1098/rstb.2018.0322 https://doi.org/10.1098/rstb.2018.0322
 
Zaczek-Moczydłowska M.A., Young G.K., Trudgett J., Plahe C., Fleming C.C., Campbell K., Hanlon R.O. (2020): Phage cocktail containing Podoviridae and Myoviridae bacteriophages inhibits the growth of Pectobacterium spp. under in vitro and in vivo conditions. PLoS One, 15: e0230842. doi: 10.1371/journal.pone.0230842 https://doi.org/10.1371/journal.pone.0230842
 
Zimmerer R.P., Hamilton R.H., Pootjes C. (1966): Isolation and morphology of temperate Agrobacterium tumefaciens bacteriophage. Journal of Bacteriology, 92: 746–750. https://doi.org/10.1128/jb.92.3.746-750.1966
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti