Characterisation of endophytic bacteria from a desert plant Lepidium perfoliatum L.

https://doi.org/10.17221/14/2016-PPSCitation:Li Y., Cheng C., An D. (2017): Characterisation of endophytic bacteria from a desert plant Lepidium perfoliatum L. Plant Protect. Sci., 53: 32-43.
download PDF
Sixty-two endophytic bacteria from the leaves, roots, and stems of healthy Lepidium perfoliatum L. were isolated and characterised. From the results, 89, 87, 90, and 97% isolates could tolerate 12% NaCl, 30% PEG 6000, 50°C and pH 10, respectively. 74% isolates could form a biofilm. Besides, 28 isolates could improve the germination rate of host seeds under different degree of drought stress. These data suggest that the endophyte isolates show considerable resistance to abiotic stress and assist their plant hosts to germinate under drought stress.
References:
Ali Shimaila, Charles Trevor C., Glick Bernard R. (2014): Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiology and Biochemistry, 80, 160-167  https://doi.org/10.1016/j.plaphy.2014.04.003
 
Altschul Stephen F., Gish Warren, Miller Webb, Myers Eugene W., Lipman David J. (1990): Basic local alignment search tool. Journal of Molecular Biology, 215, 403-410  https://doi.org/10.1016/S0022-2836(05)80360-2
 
Araújo Welington L, Maccheroni Jr. Walter, Aguilar-Vildoso Carlos I, Barroso Paulo AV, Saridakis Halha O, Azevedo João Lúcio (2001): Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Canadian Journal of Microbiology, 47, 229-236  https://doi.org/10.1139/w00-146
 
Becker Anke (2015): Challenges and perspectives in combinatorial assembly of novel exopolysaccharide biosynthesis pathways. Frontiers in Microbiology, 6, -  https://doi.org/10.3389/fmicb.2015.00687
 
Castro Renata A, Quecine Maria, Lacava Paulo T, Batista Bruna D, Luvizotto Danice M, Marcon Joelma, Ferreira Anderson, Melo Itamar S, Azevedo João L (2014): Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem. SpringerPlus, 3, 382-  https://doi.org/10.1186/2193-1801-3-382
 
Chelius M.K., Triplett E.W. (2001): The Diversity of Archaea and Bacteria in Association with the Roots of Zea mays L.. Microbial Ecology, 41, 252-263  https://doi.org/10.1007/s002480000087
 
Cherif Hanene, Marasco Ramona, Rolli Eleonora, Ferjani Raoudha, Fusi Marco, Soussi Asma, Mapelli Francesca, Blilou Ikram, Borin Sara, Boudabous Abdellatif, Cherif Ameur, Daffonchio Daniele, Ouzari Hadda (2015): Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought. Environmental Microbiology Reports, 7, 668-678  https://doi.org/10.1111/1758-2229.12304
 
Costerton J W, Lewandowski Z, Caldwell D E, Korber D R, Lappin-Scott H M (1995): Microbial Biofilms. Annual Review of Microbiology, 49, 711-745  https://doi.org/10.1146/annurev.mi.49.100195.003431
 
Costerton J. W. (): Bacterial Biofilms: A Common Cause of Persistent Infections. Science, 284, 1318-1322  https://doi.org/10.1126/science.284.5418.1318
 
Forchetti G., Masciarelli O., Alemano S., Alvarez D., Abdala G. (2007): Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Applied Microbiology and Biotechnology, 76, 1145-1152  https://doi.org/10.1007/s00253-007-1077-7
 
Forchetti Gabriela, Masciarelli Oscar, Izaguirre María J., Alemano Sergio, Alvarez Daniel, Abdala Guillermina (2010): Endophytic Bacteria Improve Seedling Growth of Sunflower Under Water Stress, Produce Salicylic Acid, and Inhibit Growth of Pathogenic Fungi. Current Microbiology, 61, 485-493  https://doi.org/10.1007/s00284-010-9642-1
 
Fterich A., Mahdhi M., Lafuente A., Pajuelo E., Caviedes M.A., Rodriguez-Llorente I.D, Mars M. (2012): Taxonomic and symbiotic diversity of bacteria isolated from nodules of Acacia tortilis subsp. raddiana in arid soils of Tunisia. Canadian Journal of Microbiology, 58, 738-751  https://doi.org/10.1139/w2012-048
 
Fujishige Nancy A., Kapadia Neel N., De Hoff Peter L., Hirsch Ann M. (2006): Investigations of Rhizobium biofilm formation. FEMS Microbiology Ecology, 56, 195-206  https://doi.org/10.1111/j.1574-6941.2005.00044.x
 
Fujishige Nancy A., Lum Michelle R., De Hoff Peter L., Whitelegge Julian P., Faull Kym F., Hirsch Ann M. (2008): Rhizobium common nod genes are required for biofilm formation. Molecular Microbiology, 67, 504-515  https://doi.org/10.1111/j.1365-2958.2007.06064.x
 
Hallmann J., Quadt-Hallmann A., Mahaffee W. F., Kloepper J. W. (1997): Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43, 895-914  https://doi.org/10.1139/m97-131
 
Hirsch A.M. (2010): How rhizobia survive in the absence of a legume host, a stressful world indeed. In: Seckbach J., Grube M. (eds): Symbioses and Stress. Joint Ventures in Biology. Dordrecht, Springer: 375–391.
 
Huang D.H., Zhao J., Yuan J.W., Dong-Sheng X.U., Chen S., Lan H.Y. (2011): A preliminary study on methods for dormancy breaking of seeds of Lepidium perfoliatum L. cultivated outdoor. Xinjiang Agricultural Sciences, 2011-03.
 
Jha Yachana, Subramanian R. B., Patel Suchita (2011): Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiologiae Plantarum, 33, 797-802  https://doi.org/10.1007/s11738-010-0604-9
 
Karthikeyan Bala, Joe Manoharan Melvin, Islam Md. Rashedul, Sa Tongmin (2012): ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis, 56, 77-86  https://doi.org/10.1007/s13199-012-0162-6
 
Krishnan P., Bhat R., Kush A., Ravikumar P. (2012): Isolation and functional characterization of bacterial endophytes from Carica papaya fruits. Journal of Applied Microbiology, 113, 308-317  https://doi.org/10.1111/j.1365-2672.2012.05340.x
 
Kumar S. (2004): MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics, 5, 150-163  https://doi.org/10.1093/bib/5.2.150
 
Li-Li G.U., Liu L.H., You T.Y., Lan H.Y., Zhang F.C. (2008): Characterization of the seed coat mucilage properties of ephemeral plant Lepidium perfoliatum L. in Xinjiang. Acta Botanica Boreali-Occidentalia Sinica, 28: 2451–2460.
 
Meneses Carlos H. S. G., Rouws Luc F. M., Simões-Araújo Jean L., Vidal Marcia S., Baldani José I. (2011): Exopolysaccharide Production Is Required for Biofilm Formation and Plant Colonization by the Nitrogen-Fixing Endophyte Gluconacetobacter diazotrophicus. Molecular Plant-Microbe Interactions, 24, 1448-1458  https://doi.org/10.1094/MPMI-05-11-0127
 
Misaghi I. J. (1990): Endophytic Bacteria in Symptom-Free Cotton Plants. Phytopathology, 80, 808-  https://doi.org/10.1094/Phyto-80-808
 
Naveed M., Hussain M.B., Zahir Z.A., Mitter B., Sessitsch A. (2014a): Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regulation, 73: 121–131.
 
Naveed M., Mitter B., Reichenauer T.G., Wieczorek K., Sessitsch A. (2014b): Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environmental & Experimental Botany, 97: 30–39.
 
Qin Sheng, Zhang Yue-Ji, Yuan Bo, Xu Pei-Yuan, Xing Ke, Wang Jun, Jiang Ji-Hong (2014): Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress. Plant and Soil, 374, 753-766  https://doi.org/10.1007/s11104-013-1918-3
 
Qurashi Aisha Waheed, Sabri Anjum Nasim (2012): Biofilm formation in moderately halophilic bacteria is influenced by varying salinity levels. Journal of Basic Microbiology, 52, 566-572  https://doi.org/10.1002/jobm.201100253
 
Reinhold-Hurek Barbara, Hurek Thomas (2011): Living inside plants: bacterial endophytes. Current Opinion in Plant Biology, 14, 435-443  https://doi.org/10.1016/j.pbi.2011.04.004
 
Rørth Mikael, Jensen P.K. (1967): Determination of catalase activity by means of the Clark oxygen electrode. Biochimica et Biophysica Acta (BBA) - Enzymology, 139, 171-173  https://doi.org/10.1016/0005-2744(67)90124-6
 
Saitou N., Nei M. (1987): The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4: 406–425.
 
Sambrook J., Fritsch E.F., Maniatis T. (1989): Molecular Cloning: A Laboratory Manual. 2nd Ed. New York, CSH Laboratory Press.
 
Seneviratne G., Weerasekara M.L.M.A.W., Seneviratne K.A.C.N., Zavahir J.S., Kecskés M.L., Kennedy I.R. (2010): Importance of biofilm formation in plant growth promoting rhizobacterial action. In: Maheshwari D.K. (ed.): Plant Growth and Health Promoting Bacteria. Vol. 18. Berlin, Springer: 81–95.
 
Sgroy Verónica, Cassán Fabricio, Masciarelli Oscar, Papa María Florencia, Lagares Antonio, Luna Virginia (2009): Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Applied Microbiology and Biotechnology, 85, 371-381  https://doi.org/10.1007/s00253-009-2116-3
 
Shi YingWu, Zhang Xuebing, Lou Kai (2013): Isolation, Characterization, and Insecticidal Activity of an Endophyte of Drunken Horse Grass, Achnatherum inebrians. Journal of Insect Science, 13, 1-12  https://doi.org/10.1673/031.013.15101
 
Stanley Nicola R., Lazazzera Beth A. (2004): Environmental signals and regulatory pathways that influence biofilm formation. Molecular Microbiology, 52, 917-924  https://doi.org/10.1111/j.1365-2958.2004.04036.x
 
Sturz A.V. (1995): The role of endophytic bacteria during seed piece decay and potato tuberization. Plant & Soil, 175: 257–263.
 
Tariq M., Hameed S., Yasmeen T., Zahid M., Zafar M. (2014): Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World Journal of Microbiology & Biotechnology, 30: 719–725.
 
Thompson J. (): The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876-4882  https://doi.org/10.1093/nar/25.24.4876
 
Xu Yu-Bin, Chen Mai, Zhang Ying, Wang Miao, Wang Ying, Huang Qiu-bin, Wang Xue, Wang Gang (2014): The phosphotransferase system gene ptsI in the endophytic bacterium Bacillus cereus is required for biofilm formation, colonization, and biocontrol against wheat sharp eyespot. FEMS Microbiology Letters, 354, 142-152  https://doi.org/10.1111/1574-6968.12438
 
Yuan J., Huang D., Dongsheng X.U., Zhao J., Ling L.I., Lan H., Zhang F. (2013): Cloning and analysis of seed coat mucilage-related gene MUM4 from Lepidium perfoliatum. Acta Botanica Boreali-Occidentalia Sinica, 33: 1940–1952.
 
download PDF

© 2019 Czech Academy of Agricultural Sciences