Effect of phenolic acid content on acceptance of hazel cultivars by filbert aphid

Citation:Gantner M., Najda A., Piesik D. (2019): Effect of phenolic acid content on acceptance of hazel cultivars by filbert aphid. Plant Protect. Sci., 55: 116-122.
download PDF

The allelopatic effect of phenolic acids contents in the leaves of six cultivars of hazel (Corylus L.) on the choice of plants by Myzocallis coryli Goetze (filbert aphid), one of the most important pest of hazel in Poland and throughout the world, was identified. The cvs White Filbert, Mogulnus, and Luizen Zellernus were more resistant to the feeding of aphids in all the years than cvs Minnas, Barra, and Halls Giant. The highest content of total phenolic acids was reported in the leaves of cvs White Filbert and Luizen Zellernuss, with a low level of acceptance by aphids. These cultivars demonstrated a high concentration of gallic acid and caffeic acid. In the leaves of cvs Minnas and Halls Giant, much infested by aphids, the total content of phenolic acids was significantly lower. Moreover, gallic and caffeic acids occurred at significantly lower concentrations. The chromatographic analysis of hazel leaf extracts revealed the presence of eight phenolic acids: gallic, protocatechuic, p-hydroxybenzoic, salicylic, chlorogenic, ferrulic, caffeic, and α-resorcinolic. The leaves of the tested cultivars, irrespective of the level of resistance to filbert aphid, showed a definitely higher concentration of acids, derivatives of trans-cinnamic acid, if compared to the amount of acids – derivatives of benzoic acid.

Amaral Joana S., Ferreres Federico, Andrade Paula B., Valentão PatrÍcia, Pinheiro Cristina, Santos Alberto, Seabra Rosa (2006): Phenolic profile of hazelnut ( Corylus Avellana L.) leaves cultivars grown in Portugal. Natural Product Research, 19, 157-163 https://doi.org/10.1080/14786410410001704778
Bernards M., Båstrup-Spohr L. (2008): Phenylpropanoid metabolism induced by wounding and insect herbivory. In: Schaller A. (ed.): Induced Plant Resistance to Herbivory. Springer Science+Business Media B.V.: 189–211.
Bolwell G.P., Bindschedler L.V., Blee K., Butt V.S., Davies D.R., Gardner S.L. Gerrish C., Minibayeva F. (2002): The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. Journal of Experimental Botany, 53: 1367–1376.
Cabrera H (1995): Changes in ferulic acid and lipid content in aphid-infested barley. Phytochemistry, 39, 1023-1026 https://doi.org/10.1016/0031-9422(95)00065-F
Chrzanowski G., Leszczyński B. (2008): Induced accumulation of phenolic acids in winter triticale (Triticosecale Wittm.) under insects feeding. Herba Polonica, 54: 33–41
Cipollini Don, Stevenson Randall, Enright Stephanie, Eyles Alieta, Bonello Pierluigi (2008): Phenolic Metabolites in Leaves of the Invasive Shrub, Lonicera maackii, and Their Potential Phytotoxic and Anti-Herbivore Effects. Journal of Chemical Ecology, 34, 144-152 https://doi.org/10.1007/s10886-008-9426-2
Czerniewicz Paweł, Sytykiewicz Hubert, Durak Roma, Borowiak-Sobkowiak Beata, Chrzanowski Grzegorz (2017): Role of phenolic compounds during antioxidative responses of winter triticale to aphid and beetle attack. Plant Physiology and Biochemistry, 118, 529-540 https://doi.org/10.1016/j.plaphy.2017.07.024
de Vos Martin, Jander Georg (2010): Volatile communication in plant–aphid interactions. Current Opinion in Plant Biology, 13, 366-371 https://doi.org/10.1016/j.pbi.2010.05.001
Eleftherianos I., Vamvatsikos P., Ward D., Gravanis F. (2006): Changes in the levels of plant total phenols and free amino acids induced by two cereal aphids and effects on aphid fecundity. Journal of Applied Entomology, 130, 15-19 https://doi.org/10.1111/j.1439-0418.2005.01017.x
Fraisse D., Carnat A., Carnat A.P., Lamaison J.L. (1999): Standardization of hazel leaf. Annales Pharmaceutiques Francaises, 57: 406–409.
Gantner M. (2000): Aphidofauna of hazel bushes (Corylus L.) on a protected plantation, an unprotected plantation and in a forest. Annales Universitatis Mariae Curie-Skłodowska, Sectio EEE: Horticultura, 8: 155–167.
Gantner M. (2008): Źródła odporności wybranych odmian leszczyny wielkoowocowej (Corylus L.) na wielkopąkowca leszczynowego (Phytoptus avellanae Nal.) i zdobniczkę leszczynową (Myzocallis coryli Goetze). [Dissertation.] Lublin, University of Life Science.
Gatehouse John A. (2002): Plant resistance towards insect herbivores: a dynamic interaction. New Phytologist, 156, 145-169 https://doi.org/10.1046/j.1469-8137.2002.00519.x
Goggin F.L., Zhu-Salzman K. (2015): Editorial overview: Pests and resistance: social networking – Studying the web of plant-insect interactions to improve host plant resistance. Current Opinion in Insect Science, 9: v-viii.
Harborne J.B. (1997): Ekologia biochemiczna. Introduction to Ecological Biochemistry. Warsaw, PWN.
Lei J., A. Finlayson S., Salzman R. A., Shan L., Zhu-Salzman K. (2014): BOTRYTIS-INDUCED KINASE1 Modulates Arabidopsis Resistance to Green Peach Aphids via PHYTOALEXIN DEFICIENT4. PLANT PHYSIOLOGY, 165, 1657-1670 https://doi.org/10.1104/pp.114.242206
Leszczyński B. (2001a): The role of allelochemicals in insectplant interactions. In: Biochemical Interactions in Environment. Lublin, Medical University: 61–85.
Leszczyński B. (2001b): Naturalna odporność roślin na szkodniki. In: Biochemical Interactions in Environment. Lublin, Medical University: 87–108.
Lombardo Luca, Coppola Gerardo, Zelasco Samanta (2016): New Technologies for Insect-Resistant and Herbicide-Tolerant Plants. Trends in Biotechnology, 34, 49-57 https://doi.org/10.1016/j.tibtech.2015.10.006
Mallikarjuna N., Kranthi K. R., Jadhav D. R., Kranthi S., Chandra S. (2004): Influence of foliar chemical compounds on the development of Spodoptera litura (Fab.) in interspecific derivatives of groundnut. Journal of Applied Entomology, 128, 321-328 https://doi.org/10.1111/j.1439-0418.2004.00834.x
Mao Jingqin, Burt Andrew J., Ramputh Al-I., Simmonds John, Cass Leslie, Hubbard Keith, Miller Shea, Altosaar Illimar, Arnason John T. (2007): Diverted Secondary Metabolism and Improved Resistance to European Corn Borer ( Ostrinia nubilalis ) in Maize ( Zea mays L.) Transformed with Wheat Oxalate Oxidase. Journal of Agricultural and Food Chemistry, 55, 2582-2589 https://doi.org/10.1021/jf063030f
Najda A. (2004): Plonowanie i ocena fitochemiczna roślin w różnych fazach wzrostu dwu odmian selera naciowego (Apium graveolens L. var. dulce Mill./Pers.). [PhD Thesis.] University of Life Science in Lublin.
Najda Agnieszka, Dyduch Jan, Dyduch-Siemińska Magdalena, Gantner Magdalena (2014): Comparative analysis of secondary metabolites contents in Fragaria vesca L. fruits. Annals of Agricultural and Environmental Medicine, 21, 339-343 https://doi.org/10.5604/1232-1966.1108601
Nollet L.M. (ed.) (2000): Food Analysis by HPLC. Basel, Marcel Dekker: 511–587.
OLIVEIRA I, SOUSA A, VALENTAO P, ANDRADE P, FERREIRA I, FERRERES F, BENTO A, SEABRA R, ESTEVINHO L, PEREIRA J (2007): Hazel (Corylus avellana L.) leaves as source of antimicrobial and antioxidative compounds. Food Chemistry, 105, 1018-1025 https://doi.org/10.1016/j.foodchem.2007.04.059
Pańka Dariusz, Piesik Dariusz, Jeske Małgorzata, Baturo-Cieśniewska Anna (2013): Production of phenolics and the emission of volatile organic compounds by perennial ryegrass (Lolium perenne L.)/Neotyphodium lolii association as a response to infection by Fusarium poae. Journal of Plant Physiology, 170, 1010-1019 https://doi.org/10.1016/j.jplph.2013.02.009
Pélissié Benjamin, Crossley Michael S, Cohen Zachary Paul, Schoville Sean D (2018): Rapid evolution in insect pests: the importance of space and time in population genomics studies. Current Opinion in Insect Science, 26, 8-16 https://doi.org/10.1016/j.cois.2017.12.008
Qawasmeh A., Obied H.K., Raman A., Wheatley W. (2012a): Influence of fungal endophyte infection on phenolic content and antioxidant activity in grasses: interaction between Lolium perenne and different strains of Neotyphodium lolii. Journal of Agricultural and Food Chemistry, 60: 3381–3388.
Qawasmeh A., Raman A., Wheatley W., Nicol H. (2012b): Antioxidative capacity of phenolic compounds extracted from Lolium perenne and Lolium arundinaceum infected with Neotyphodium (Hypocreales: Clavicipitaceae). Acta Physiologiae Plantarum, 34: 827–833.
Smith C. Michael, Boyko Elena V. (2007): The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomologia Experimentalis et Applicata, 122, 1-16 https://doi.org/10.1111/j.1570-7458.2006.00503.x
Tefera Tadele, Mugo Stephen, Beyene Yoseph (2016): Developing and deploying insect resistant maize varieties to reduce pre-and post-harvest food losses in Africa. Food Security, 8, 211-220 https://doi.org/10.1007/s12571-015-0537-7
Walczyńska Aleksandra (2009): Bioenergetic strategy of a xylem-feeder. Journal of Insect Physiology, 55, 1107-1117 https://doi.org/10.1016/j.jinsphys.2009.08.006
Wojciechowicz-Żytko E. (2003): Development of Myzocallis coryli Goetze (Homoptera, Aphidodea) on the different hazel (Corylus L.) cultivars. Journal of Plant Protection Research, 43: 369–374.
download PDF

© 2019 Czech Academy of Agricultural Sciences