Antagonistic bioagent mechanisms of controlling potato soft rot

https://doi.org/10.17221/166/2020-PPS
download PDF

Bacterial antagonists are effective as an alternative to synthetic bactericides in the control of potato soft rot. The use of bioagents reduces the application of synthetic bactericides, which are harmful to humans and the environment. However, the mechanisms of some bioagents, such as some fungi and bacteria, are not yet understood. This paper reviews the current situation of potato soft rot, biological controls, antagonistic bioagents and their mechanisms, application strategies and future directions in today’s agriculture. These mechanisms include mycoparasitism, competition, rhizosphere colonisation, synthesis and release of metabolites. Bioagents increased the defensive system of plants by increasing the antioxidants genes, such as superoxide dismutase, peroxidase (POD) and catalase (CAT), and eventually increased the plant growth and yield production.

 

References:
Abd-El-Khair H., Karima H.E.H. (2007): Application of some bactericides and bio-agents for controlling the soft rot disease in potato. Research Journal of Agricultural and Biological Sciences, 3: 463–473.
 
Abdallah D.B., Frikha-Gargouri O., Tounsi S. (2018): Rizhospheric competence, plant growth promotion and biocontrol efficacy of Bacillus amyloliquefaciens subsp. plantarum strain 32a. Biological Control, 124: 61–67. https://doi.org/10.1016/j.biocontrol.2018.01.013
 
Agrios G. (2006): Bacterial Soft Rots. San Diego, Academic Press.
 
Algeblawi A., Adam F. (2013): Biological control of Erwinia carotovora subsp. carotovora by Pseudomonas fluorescens, Bacillus subtilis, and Bacillu thuringiensis. International Journal of Chemical, Environmental and Biological Sciences, 5: 70–79.
 
Andrews S.C., Robinson A.K., Quiñones F.R. (2003): Bacterial iron homeostasis. FEMS Microbiology Review, 27: 215–237. https://doi.org/10.1016/S0168-6445(03)00055-X
 
Arsenijevic M. (1970): A bacterial soft rot of sunflower. Phytopathologica Academiae Scientiarum of Hungary, 5: 317–326.
 
Arwiyanto T., Hartana I. (2001): Field experiment of biological control of tobacco bacterial wilt (Ralstonia solanacearum). Mediagama, 3: 7–14.
 
Azaiez S., Slimene I.B., Karkouch I., Essid R., Jallouli S., Djebali N., Tabbene O. (2018): Biological control of the soft rot bacterium Pectobacterium carotovorum by Bacillus amyloliquefaciens strain Ar10 producing glycolipid-like compounds. Microbiological Research, 217: 23–33. https://doi.org/10.1016/j.micres.2018.08.013
 
Banik A., Mukhopadhaya S.K., Dangar T.K. (2016): Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes. Planta, 243: 799–812. https://doi.org/10.1007/s00425-015-2444-8
 
Basu A. (2009): Employing eco-friendly potato disease management allows organic tropical Indian production systems to prosper. Asian Journal of Food and Agro-Industry, 3: 80–87.
 
Becker M. (2018): Comparative genomics reveal a flagellar system, a type VI secretion system and plant growth-promoting gene clusters unique to the endophytic bacterium Kosakonia radicincitans. Frontiers in Microbiology, 9: 1997. doi: 10.3389/fmicb.2018.01997 https://doi.org/10.3389/fmicb.2018.01997
 
Bélanger R.R., Labbé C., Lefebvre F., Teichmann B. (2012): Mode of action of biocontrol agents: All that glitters is not gold. Canadian Journal of Plant Pathology, 34: 469–478.  https://doi.org/10.1080/07060661.2012.726649
 
Beneduzi A., Ambrosini A., Passaglia L.M. (2012): Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetic and Molecule Biology, 35: 1044–1051. https://doi.org/10.1590/S1415-47572012000600020
 
Berg G. (2009): Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84: 11–18. https://doi.org/10.1007/s00253-009-2092-7
 
Bloom B., Ehlers R., Haukeland-Salinas S., Hoddanen H., Jung K. (2003): Biological control agents: Safety and regulatory policy. Biological Control, 48: 477–484.
 
Bravo A., Gill S.S., Soberon M. (2007): Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49: 422–435. https://doi.org/10.1016/j.toxicon.2006.11.022
 
Buttimer C., McAuliffe O., Ross R.P., Hill C., O’Mahony J., Coffey A. (2017): Bacteriophages and bacterial plant diseases. Frontier Microbiology, 4: 23. doi: 10.3389/fmicb.2017.00034 https://doi.org/10.3389/fmicb.2017.00034
 
Calvo-Garrido C., Viñas I., Elmer P.A., Usall J., Teixidó N. (2014): Suppression of Botrytis cinerea on necrotic grapevine tissues by early-season applications of natural products and biological control agents. Pest Management Science, 70: 595–602. https://doi.org/10.1002/ps.3587
 
Cladera-Olivera F., Caron G.R., Motta A.S., Souto A.A., Brandelli A. (2006): Bacteriocin-like substance inhibits potato soft rot caused by Erwinia carotovora. Canadian Journal of Microbiology, 52: 533–539. https://doi.org/10.1139/w05-159
 
Conrath U., Beckers G.J.M., Langenbach C.J.G., Jaskiewicz M.R. (2015): Priming for enhanced defense. Annual Reviews of Phytopathology, 53: 97–119.  https://doi.org/10.1146/annurev-phyto-080614-120132
 
Czajkowski R., Pérombelon M.C.M., van Veen J.A., van der Wolf J.M. (2011): Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: A review. Plant Pathology, 60: 999–1013. https://doi.org/10.1111/j.1365-3059.2011.02470.x
 
Czajkowski R., Pérombelon M.C.M., Jafra S., Lojkowska E., Potrykus M., van der Wolf J.M., Sledz W. (2015): Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: A review. Annals of Applied Biology, 166: 18–38. https://doi.org/10.1111/aab.12166
 
De Capdeville G., Wilson C.L., Beer S.V., Aist J.R. (2002): Alternative disease control agents induce resistance to blue mold in harvested Red Delicious apple fruit. Phytopathology, 92: 900–908. https://doi.org/10.1094/PHYTO.2002.92.8.900
 
Degefu Y., Potrykus M., Golanowska M., Virtanen E., Lojkowska E. (2013): A new clade of Dickeya spp. plays a major role in potato blackleg outbreaks in North Finland. Annals of Applied Biology, 162: 231–241. https://doi.org/10.1111/aab.12020
 
Deori M., Jayamohan N.S., Kumudini B.S. (2018): Production, characterization and iron binding affinity of hydroxamate siderophores from rhizosphere associated fluorescent Pseudomonas. Journal of Plant Protection Research, 58: 36–43.
 
des Essarts Y.R., Cigna J., Quetu-Laurent A., Caron A., Munier E., Beury-Cirou A., Helias V., Faure D. (2016): Biocontrol of the potato blackleg and soft rot diseases caused by Dickeya dianthicola. Applied Environmental and Microbiology, 82: 268–278. https://doi.org/10.1128/AEM.02525-15
 
Diallo S., Crépin A., Barbey C., Orange N., Burini J.F., Latour X. (2011): Mechanisms and recent advances in biological control are mediated through the potato rhizosphere. FEMS Microbiology Ecology, 75: 351–364. https://doi.org/10.1111/j.1574-6941.2010.01023.x
 
Doolotkeldieva T., Bobusheva S., Suleymankisi A. (2016): Biological control of Erwinia carotovora ssp. carotovora by Streptomyces species. Advanced Microbiology, 6: 104–114. https://doi.org/10.4236/aim.2016.62011
 
Etminani F., Harighi B. (2018): Isolation and Identification of endophytic bacteria with plant growth-promoting activity and biocontrol potential from wild Pistachio trees. Plant Pathology Journal, 34: 208–217. https://doi.org/10.5423/PPJ.OA.07.2017.0158
 
FAOSTAT (2015): Food and Agriculture Organisation of the United Nations. Rome, FAO. Available at https://www.fao.org/faostat/en/#home.
 
Farrar J.J., Nunez J.J., Davis R.M. (2009): Losses due to lenticel rot are an increasing concern for Karen county potato growers. California Agriculture, 63: 127–130. https://doi.org/10.3733/ca.v063n03p127
 
Fernando W.D., Nakkeeran S., Zhang Y. (2005): Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: Siddiqui Z.A. (ed.): PGPR: Biocontrol and Biofertilization. Dodrecht, Springer: 67–109.
 
Gallois A., Samson R., Ageron E., Grimont P.A.D. (1992): Erwinia carotovora subsp. odorifera subsp. nov., associated with odorous soft rot of chicory (Cichorium intybus L.). International Journal of Systematic Bacteriology, 42: 582–588. https://doi.org/10.1099/00207713-42-4-582
 
Garge S.S., Nerurkar A.S. (2017): Evaluation of quorum quenching Bacillus spp. for their biocontrol traits against Pectobacterium carotovorum subsp. carotovorum causing soft rot. Biocatalysis Agriculture and Biotechnology, 9: 48–57.  https://doi.org/10.1016/j.bcab.2016.11.004
 
Ghorbanpour M., Omidvari M., Abbaszadeh-Dahaji P., Omidvar R., Kariman K. (2018): Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biological Control, 117: 147–157. https://doi.org/10.1016/j.biocontrol.2017.11.006
 
Gilden R.C., Huffling K., Sattler B. (2010): Pesticides and health risks. European Journal of Obstetrics, Gynecology and Reproductive Biology, 39: 103–110. https://doi.org/10.1111/j.1552-6909.2009.01092.x
 
Goudjal Y., Zamoum M., Sabaou N., Mathieu F., Zitouni A. (2016): Potential of endophytic Streptomyces spp. for biocontrol of Fusarium root rot disease and growth promotion of tomato seedlings. Biocontrol Science and Technology, 26: 1691–1705. https://doi.org/10.1080/09583157.2016.1234584
 
Gracia-Garza J.A., Blom T.J., Brown W., Allen W. (2002): Pre-and post-plant applications of copper-based compounds to control Erwinia soft rot of calla lilies. Canadian Journal of Plant Pathology, 24: 274–280. https://doi.org/10.1080/07060660209507009
 
Guevara Y.M., Rondon A.G., Solorzano R. (1980): Bacterial infection of the mango (Mangifera indica L.) in Venezuela. I. Symptomology and identification. Agronomía Tropical, 30: 65–76.
 
Haas D., Defago G. (2005): Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3: 307–331. https://doi.org/10.1038/nrmicro1129
 
Hajhamed A., Sayed W.M.A.E., Yazied A.A.E., Ghaffar N.Y.A.E. (2007): Suppression of bacterial soft rot disease of potato. Egyptian Journal of Phytopathology, 35: 69–80.
 
Harman G.E. (2006): Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96: 190–194. https://doi.org/10.1094/PHYTO-96-0190
 
Harman G.E., Howell C.R., Vertibo A., Chet I., Lorito M. (2004): Trichoderma species – Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2: 43–56. https://doi.org/10.1038/nrmicro797
 
Heidarzadeh N., Baghaee-Ravari S. (2015): Application of Bacillus pumilus as a potential biocontrol agent of Fusarium wilt of tomato. Archives of Phytopathology and Plant Protection, 48: 841–849. https://doi.org/10.1080/03235408.2016.1140611
 
Heimpel G.E., Mills N. (2017): Biological Control: Ecology and Applications. Cambridge, Cambridge University Press.
 
Heydari A., Misaghi I.J. (2003): The role of rhizosphere bacteria in herbicide-mediated increase in Rhizoctonia solani-induced cotton seedling damping-off. Plant Soil, 257: 391–396. https://doi.org/10.1023/A:1027330215553
 
Heydari A., Fattahi H., Zamanizadeh H.R., Zadeh N.H., Naraghi L. (2004): Investigation on the possibility of using bacterial antagonists for biological control of cotton seedling damping-off in a greenhouse. Applied Entomology and Phytopathology, 72: 51–68.
 
Hibbing M.E., Fuqua C., Parsek M.R., Peterson S.B. (2010): Bacterial competition: Surviving and thriving in the microbial jungle. Nature Reviews Microbiology, 8: 15–25. https://doi.org/10.1038/nrmicro2259
 
Chakravarti B.P., Rangarajan M. (1966): Occurrence of Erwinia aroideae on two new hosts in India. Plant Disease Report, 50: 701–702.
 
Charkowski A. (2015): Biology and control of Pectobacterium in potato. American Journal of Potato Research, 92: 223–229.  https://doi.org/10.1007/s12230-015-9447-7
 
Chen X., Zhang Y., Fu X., Li Y., Wang Q. (2016): Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot. Postharvest Biological Technology, 115: 113–121. https://doi.org/10.1016/j.postharvbio.2015.12.021
 
Choudhary D.K., Johri B.N. (2008): Interactions of Bacillus spp. and plants with special reference to induced systemic resistance (ISR). Microbiology Research, 164: 493–513. https://doi.org/10.1016/j.micres.2008.08.007
 
Islam M.T., Hashidoko Y., Deora A., Ito T., Tahara S. (2005): Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Applied Environmental Microbiology, 71: 3786–3796. https://doi.org/10.1128/AEM.71.7.3786-3796.2005
 
Janisiewicz W.J., Peterson D.L. (2004): Susceptibility of the stem pull area of mechanically harvested apples to blue mold decay and its control with a biocontrol agent. Plant Diseases, 88: 662–664. https://doi.org/10.1094/PDIS.2004.88.6.662
 
Jankutė A., Guobužaitė S., Jakubovskis R., Gribniak V., Urbonavičius J. (2020): Investigating viability of alkaliphilic Bacillus species in biological self-healingconcrete. In: FEMS Online Conference on Microbiology, Oct 28–31, 2020, Electronic abstract book.
 
Jess S., Kildea S., Moody A., Rennick G., Murchie A.K., Cooke L.R. (2014): European Union policy on pesticides: Implications for agriculture in Ireland. Pest and Management Science, 70: 1646–1654. https://doi.org/10.1002/ps.3801
 
Jing Y.D., He Z.L., Yang X.E. (2007): Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. Journal of Zhejiang University Science, 8: 192–207. https://doi.org/10.1631/jzus.2007.B0192
 
Jones J.B., Jackson L.E., Balogh B., Obradovic A., Iriarte F.B., Momol M.T. (2007): Bacteriophages for plant disease control. Annual Review of Phytopathology, 45: 245–262. https://doi.org/10.1146/annurev.phyto.45.062806.094411
 
Kai M., Effmert U., Berg G., Piechulla B. (2007): Volatiles of bacterial antagonists inhibits mycelial growth of the plant pathogen Rhizoctonia solani. Archive Microbiology, 187: 351–360. https://doi.org/10.1007/s00203-006-0199-0
 
Kamysz W., Krolicka A., Bogucka K., Ossowski T., Lukasiak J., Lojkowska E. (2005): Antibacterial activity of synthetic peptides against plant pathogenic Pectobacterium species. Journal of Phytopathology, 153: 313–317. https://doi.org/10.1111/j.1439-0434.2005.00976.x
 
Kefi A., Ben Slimene I., Karkouch I., Rihouey C., Azaeiz S., Bejaoui M., Belaid R., Cosette P., Jouenne T., Limam F. (2015): Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers. World Journal of Microbiology and Biotechnology, 31: 1967–1976. https://doi.org/10.1007/s11274-015-1943-x
 
Khayi S., des Essarts Y.R., Mondy S., Moumni M., Hélias V., BeuryCirou A., Faure D. (2015): Draft genome sequences of the three Pectobacterium-antagonistic bacteria Pseudomonas brassicacearum PP1-210F and PA1G7 and Bacillus simplex BA2H3. Genome Announcements, 3: e01497-14. doi: 10.1128/genomeA.01497-14 https://doi.org/10.1128/genomeA.01497-14
 
Kieser T., Bibb M.J., Buttner M.J., Chater K.F., Hopwood D.A. (2000): Practical Streptomyces Genetics. Norwich, The John Innes Foundation.
 
Kloepper J.W. (1993): Plant growth-promoting rhizobacteria as biological control agents. In: Metting FB Jr (ed.): Soil Microbial Ecology. New York, Dekker: 255–274.
 
Kloepper J.W., Ryu C.M., Zhang S. (2004): Induce systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94: 1259–1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
 
Kobayashi D., El-Barrad N.H. (1996): Selection of bacterial antagonists using enrichment cultures for the control of summer patch disease in Kentucky bluegrass. Current Microbiology, 32: 106–110. https://doi.org/10.1007/s002849900019
 
Koch E., Becker J.O., Berg G., Hauschild R., Jehle J., Köhl J. (2018): Biocontrol of plant diseases is not an unsafe technology. Journal of Plant Diseases and Protection, 125: 121–125. https://doi.org/10.1007/s41348-018-0158-4
 
Koumoutsi A., Chen X.H., Henne A., Liesegang H., Gabriele H., Franke P., Vater J., Borris R. (2004): Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive lipopeptides in Bacillus amyloliquefaciens strain FZB42. Journal of Bacteriology, 186: 1084–1096. https://doi.org/10.1128/JB.186.4.1084-1096.2004
 
Krzyzanowska D.M., Potrykus M., Golanowska M., Polonis K., Gwizdek-Wisniewska A., Lojkowska E., Jafra S. (2012): Rhizosphere bacteria as potential biocontrol agents against soft rot caused by various Pectobacterium and Dickeya spp. strains. Journal of Plant Pathology, 94: 367–378.
 
Leclere V., Bechet M., Adam A., Guez J.S., Wathelet B., Ongena M., Thonart P., Gancel F., Chollet-Imbert M., Jacques P. (2005): Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Applied and Environmental Microbiology, 71: 4577–4584. https://doi.org/10.1128/AEM.71.8.4577-4584.2005
 
Ling N., Xue C., Huang Q.W., Yang X.M., Xu Y.C., Shen Q.R. (2010): Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. BioControl, 55: 673–683. https://doi.org/10.1007/s10526-010-9290-1
 
Liu D. (2017): Promotion of iron nutrition and growth on peanut by Paenibacillus illinoisensis and Bacillus sp. strains in calcareous soil. Brazilian Journal of Microbiology, 48: 656–670. https://doi.org/10.1016/j.bjm.2017.02.006
 
Lugtenberg B., Rozen D.E., Kamilova F. (2017): Wars between microbes on roots and fruits. F1000Research, 6: 343. doi: 10.12688/f1000research.10696.1 https://doi.org/10.12688/f1000research.10696.1
 
Ma H. (2007): Progress on control of potato soft rot in China. Biotechnology Bulletin, 1: 42–44.
 
Makhlouf A.H., Abdeen R. (2014): Investigation on the effect of chemical and biological control of bacterial soft rot disease of potato in storage. Journal of Biology, Agriculture and Healthcare, 4: 31–44.
 
Marimuthu S., Ramamoorthy V., Samiyappan R., Subbian P. (2013): Intercropping system with combined application of Azospirillum and Pseudomonas fluorescens reduces root rot incidence caused by Rhizoctonia bataticola and increases seed cotton yield. Journal of Phytopathology, 161: 405–411. https://doi.org/10.1111/jph.12084
 
Massart S., Martinez-Medina M., Jijakli M.H. (2015): Biological control in the microbiome era: Challenges and opportunities. Biological Control, 89: 98–108. https://doi.org/10.1016/j.biocontrol.2015.06.003
 
Milgroom M.G., Cortesi P. (2004): Biological control of chestnut blight with hypovirulence: A critical analysis. Annual Review of Phytopathology, 42: 311–338. https://doi.org/10.1146/annurev.phyto.42.040803.140325
 
Munir S., Li Y., He P., Cui W. (2018): Bacillus subtilis L1-21 possible assessment of inhibitory mechanism against phytopathogens and colonization in different plant hosts. Pakistan Journal of Agriculture Science, 55: 996–1002.
 
Neeraja C., Anil K., Purushotham P., Suma K., Sarma P. (2010): Biotechnological approaches to develop bacterial chitinases as a bioagent against fungal diseases. Critical Reviews in Biotechnology, 30: 231–241. https://doi.org/10.3109/07388551.2010.487258
 
Nelkner J., Torres Tejerizo G., Hassa J., Lin T.W., Witte J., Verwaaijen B., Schlüter A. (2019): Genetic potential of the biocontrol agent Pseudomonas brassicacearum (formerly P. trivialis) 3Re2-7 unraveled by genome sequencing and mining, comparative genomics and transcriptomics. Genes, 10: 601. doi: 10.3390/genes10080601 https://doi.org/10.3390/genes10080601
 
Ngadze E., Coutinho T.A., van der Waals J.E. (2010): First report of soft rot of potatoes caused by Dickeya dadantii in Zimbabwe. Plant Disease, 94: 1263. doi: 10.1094/PDIS-05-10-0361 https://doi.org/10.1094/PDIS-05-10-0361
 
Nissinen R.M., Männistö M.K., van Elsas J.D. (2012): Endophytic bacterial communities in three arctic plants from low arctic fell tundra are cold-adapted and host-plant specific. FEMS Microbiology Ecology, 82: 510–522. https://doi.org/10.1111/j.1574-6941.2012.01464.x
 
Oshnoei F.T., Harighi B., Abdollahzadeh J. (2017): Isolation and identification of endophytic bacteria with plant-growth-promoting and biocontrol potential from the oak tree. European Journal for Pathology, 47: 1–8.
 
Paoletti M.G., Pimentel D. (2000): Environmental risks of pesticides versus genetic engineering for agricultural pest control. Journal of Agricultural and Environmental Ethics, 12: 279–303. https://doi.org/10.1023/A:1009571131089
 
Phokim C., Jitareerat P., Photchanachai S., Cheevadhanarak S. (2006): Detection and classification of soft rot Erwinia of vegetables in Thailand by DNA polymerase chain reaction. In: Proceedings of the 4th International Conference on Managing Quality in Chains – The Integrated View on Fruits and Vegetables Quality, Aug 7, 2006, Bangkok, Thailand: 917–925.
 
Pieterse C.M.J., Zamioudis C., Berendsen R.L., Weller D.M., Van Wees S.C.M., Bakker P.A.H.M. (2014): Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52: 347–375. https://doi.org/10.1146/annurev-phyto-082712-102340
 
Pritchard L., Glover R.H., Humphris S., Elphinstone J.G., Toth I.K. (2016): Genomics and taxonomy in diagnostics for food security: Soft-rotting enterobacterial plant pathogens. Analytical Methods, 8: 12–24. https://doi.org/10.1039/C5AY02550H
 
Raaijmakers J.M., Mazzola M. (2012): Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annual Reviews of Phytopathology, 50: 403–424. https://doi.org/10.1146/annurev-phyto-081211-172908
 
Rahman M.M., Ali M.E., Khan A.A., Hashim U., Akanda A.M., Hakim M.A. (2012): Characterization and identification of soft rot bacterial pathogens in Bangladeshi potatoes. African Journal of Microbiology Research, 6: 1437–1445. https://doi.org/10.5897/AJMR11.1238
 
Rahme L.G., Tan M.W., Le L., Wong S.M., Tompkins R.G., Calderwood S.B., Ausubel F.M. (1997): Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proceedings of the National Academy of Sciences of the United States of America, 94: 13245–13250. https://doi.org/10.1073/pnas.94.24.13245
 
Reinhold-Hurek B., Hurek T. (2011): Living inside plants: Bacterial endophytes. Current Opinion in Plant Biology, 14: 435–443. https://doi.org/10.1016/j.pbi.2011.04.004
 
Riley M.A., Wertz J.E. (2002): Bacteriocins: Evolution, ecology, and application. Annual Reviews Microbiology, 56: 117–137. https://doi.org/10.1146/annurev.micro.56.012302.161024
 
Romanazzi G., Sanzani S.M., Bi Y., Tian S., Martínez P.G., Alkan N. (2016): Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biology and Technology, 122: 82–94. https://doi.org/10.1016/j.postharvbio.2016.08.003
 
Romeiro R.S., Sousa R.M., Muchovej J.J., Kimura O. (1988): Soft rot of Peruvian carrot due to Erwinia carotovora in Brazil. Plant Pathology, 37: 300–302. https://doi.org/10.1111/j.1365-3059.1988.tb02079.x
 
Romero-Perdomo F., Abril J., Camelo M., Moreno-Galván A., Pastrana I., Rojas-Tapias D., Bonilla R. (2017): Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): Effect in reducing N fertilization. Revista Argentina de Microbiología, 49: 377–383. https://doi.org/10.1016/j.ram.2017.04.006
 
Sandra A.I., Wright C.H., Zumoff L.S., Steven V.B. (2001): Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Applied and Environmental Microbiology, 67: 282–292.
 
Santoyo G., Orozco-Mosqueda M.D.C., Govindappa M. (2012): Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Science and Technology, 22: 855–872. https://doi.org/10.1080/09583157.2012.694413
 
Selim H.M.M., Gomaa N.M., Essa A.M.M. (2017): Application of endophytic bacteria for the biocontrol of Rhizoctonia solani (Cantharellales: Ceratobasidiaceae) damping-off disease in cotton seedlings. Biocontrol Science and Technology, 27: 81–95. https://doi.org/10.1080/09583157.2016.1258452
 
Shanahan P., O’Sullivan D.J., Simpson P., Glennon J.D., O’Gara F. (1992): Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Applied and Environmental Microbiology, 58: 353–358. https://doi.org/10.1128/aem.58.1.353-358.1992
 
Schuerger A.C., Batzer J.C. (1993): Identification and host range of an Erwinia pathogen causing stem rots on hydroponically grown plants. Plant Disease, 77: 472–477. https://doi.org/10.1094/PD-77-0472
 
Smith M.A. (1944): Bacterial soft rot of spinach. Phytopathology, 34: 747–752.
 
Spadaro D., Droby S. (2016): Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Science and Technology, 47: 39–49.  https://doi.org/10.1016/j.tifs.2015.11.003
 
Syed Ab Rahman S.F., Singh E., Pieterse C.M.J., Schenk P.M. (2018): Emerging microbial biocontrol strategies for plant pathogens. Plant Sciences, 267: 102–111.  https://doi.org/10.1016/j.plantsci.2017.11.012
 
Takimoto S. (1931): A soft rot of sugarbeet and its causal organisms. Annals of the Phytopathological Society of Japan, 2: 350–356. https://doi.org/10.3186/jjphytopath.2.350
 
Tariq M., Yasmin S., Hafeez F.Y. (2010): Biological control of potato black scurf by rhizosphere associated bacteria. Brazilian Journal of Microbiology, 41: 439–451. https://doi.org/10.1590/S1517-83822010000200026
 
Thakore Y. (2006): The bio-bactericide market for global agricultural use. Indian Biotechnology, 2: 194–208. https://doi.org/10.1089/ind.2006.2.194
 
Vanneste J.L., Yu J. (1996): Biological control of fire blight using Erwinia herbicola Eh252 and Pseudomonas fluorescens A506 separately or in combination. Acta Horticulture, 411: 351–353. https://doi.org/10.17660/ActaHortic.1996.411.71
 
Viveros O.M., Jorquera M.A., Crowley D.E., Gajardo G., Mora M.L. (2010): Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Journal of Soil Science and Plant Nutrition, 10: 293–319.
 
Walker J. (2004): Bacterial soft rot. In: Chupp C. (ed.): Manual of Vegetable Plant Diseases. New Delhi: Shristi Book Distributors.
 
Wiesel L., Newton A.C., Elliott I., Booty D., Gilroy E.M., Birch P.R.J. (2014): Molecular effects of resistance elicitors from the biological origin and their potential for crop protection. Frontier Plant Science, 5: 655. doi: 10.3389/fpls.2014. 00
 
Wilhite S.E., Lumsden R.D., Strancy D.C. (2001): Peptide synthetase gene in Trichoderma virens. Applied and Environmental Microbiology, 67: 5055–5062. https://doi.org/10.1128/AEM.67.11.5055-5062.2001
 
Wimalajeewa D.L.S. (1976): Studies on bacterial soft rot of celery in Vicotoria. Australian Journal of Experimental Agriculture and Animal Husbandry, 16: 915–920. https://doi.org/10.1071/EA9760915
 
Yuan W.M., Crawford D.L. (1995): Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Applied and Environmental Microbiology, 61: 3119–3128. https://doi.org/10.1128/aem.61.8.3119-3128.1995
 
Zang L.S., Wang S., Zhang F., Desneux N. (2020): Biological control with Trichogramma in China: History, present status and perspectives. Annual Review of Entomology, 66: 463–484.  https://doi.org/10.1146/annurev-ento-060120-091620
 
Zhao Y., Li P., Huang K., Wang Y., Hu H., Sun Y. (2013): Control of postharvest soft rot caused by Erwinia carotovora of vegetables by a strain of Bacillus amyloliquefaciens and its potential modes of action. World Journal of Microbiology and Biotechnology, 29: 411–420.  https://doi.org/10.1007/s11274-012-1193-0
 
Zhou D., Huang X.F., Chaparro J.M., Badri D.V., Manter D.K. (2016): Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects. Plant Soil, 401: 259–272. https://doi.org/10.1007/s11104-015-2743-7
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti