Antagonistic bioagent mechanisms of controlling potato soft rot

Osei R., Yang C., Cui L., Wei L., Jin M., Wei X. (2022): Antagonistic bioagent mechanisms of controlling potato soft rot. Plant Protect. Sci., 58:18-30.


download PDF

Bacterial antagonists are effective as an alternative to synthetic bactericides in the control of potato soft rot. The use of bioagents reduces the application of synthetic bactericides, which are harmful to humans and the environment. However, the mechanisms of some bioagents, such as some fungi and bacteria, are not yet understood. This paper reviews the current situation of potato soft rot, biological controls, antagonistic bioagents and their mechanisms, application strategies and future directions in today’s agriculture. These mechanisms include mycoparasitism, competition, rhizosphere colonisation, synthesis and release of metabolites. Bioagents increased the defensive system of plants by increasing the antioxidants genes, such as superoxide dismutase, peroxidase (POD) and catalase (CAT), and eventually increased the plant growth and yield production.


Abd-El-Khair H., Karima H.E.H. (2007): Application of some bactericides and bio-agents for controlling the soft rot disease in potato. Research Journal of Agricultural and Biological Sciences, 3: 463–473.
Abdallah D.B., Frikha-Gargouri O., Tounsi S. (2018): Rizhospheric competence, plant growth promotion and biocontrol efficacy of Bacillus amyloliquefaciens subsp. plantarum strain 32a. Biological Control, 124: 61–67.
Agrios G. (2006): Bacterial Soft Rots. San Diego, Academic Press.
Algeblawi A., Adam F. (2013): Biological control of Erwinia carotovora subsp. carotovora by Pseudomonas fluorescens, Bacillus subtilis, and Bacillu thuringiensis. International Journal of Chemical, Environmental and Biological Sciences, 5: 70–79.
Andrews S.C., Robinson A.K., Quiñones F.R. (2003): Bacterial iron homeostasis. FEMS Microbiology Review, 27: 215–237.
Arsenijevic M. (1970): A bacterial soft rot of sunflower. Phytopathologica Academiae Scientiarum of Hungary, 5: 317–326.
Arwiyanto T., Hartana I. (2001): Field experiment of biological control of tobacco bacterial wilt (Ralstonia solanacearum). Mediagama, 3: 7–14.
Azaiez S., Slimene I.B., Karkouch I., Essid R., Jallouli S., Djebali N., Tabbene O. (2018): Biological control of the soft rot bacterium Pectobacterium carotovorum by Bacillus amyloliquefaciens strain Ar10 producing glycolipid-like compounds. Microbiological Research, 217: 23–33.
Banik A., Mukhopadhaya S.K., Dangar T.K. (2016): Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes. Planta, 243: 799–812.
Basu A. (2009): Employing eco-friendly potato disease management allows organic tropical Indian production systems to prosper. Asian Journal of Food and Agro-Industry, 3: 80–87.
Becker M. (2018): Comparative genomics reveal a flagellar system, a type VI secretion system and plant growth-promoting gene clusters unique to the endophytic bacterium Kosakonia radicincitans. Frontiers in Microbiology, 9: 1997. doi: 10.3389/fmicb.2018.01997
Bélanger R.R., Labbé C., Lefebvre F., Teichmann B. (2012): Mode of action of biocontrol agents: All that glitters is not gold. Canadian Journal of Plant Pathology, 34: 469–478.
Beneduzi A., Ambrosini A., Passaglia L.M. (2012): Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetic and Molecule Biology, 35: 1044–1051.
Berg G. (2009): Plant-microbe interactions promoting plant growth and health: Perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology, 84: 11–18.
Bloom B., Ehlers R., Haukeland-Salinas S., Hoddanen H., Jung K. (2003): Biological control agents: Safety and regulatory policy. Biological Control, 48: 477–484.
Bravo A., Gill S.S., Soberon M. (2007): Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49: 422–435.
Buttimer C., McAuliffe O., Ross R.P., Hill C., O’Mahony J., Coffey A. (2017): Bacteriophages and bacterial plant diseases. Frontier Microbiology, 4: 23. doi: 10.3389/fmicb.2017.00034
Calvo-Garrido C., Viñas I., Elmer P.A., Usall J., Teixidó N. (2014): Suppression of Botrytis cinerea on necrotic grapevine tissues by early-season applications of natural products and biological control agents. Pest Management Science, 70: 595–602.
Cladera-Olivera F., Caron G.R., Motta A.S., Souto A.A., Brandelli A. (2006): Bacteriocin-like substance inhibits potato soft rot caused by Erwinia carotovora. Canadian Journal of Microbiology, 52: 533–539.
Conrath U., Beckers G.J.M., Langenbach C.J.G., Jaskiewicz M.R. (2015): Priming for enhanced defense. Annual Reviews of Phytopathology, 53: 97–119.
Czajkowski R., Pérombelon M.C.M., van Veen J.A., van der Wolf J.M. (2011): Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: A review. Plant Pathology, 60: 999–1013.
Czajkowski R., Pérombelon M.C.M., Jafra S., Lojkowska E., Potrykus M., van der Wolf J.M., Sledz W. (2015): Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: A review. Annals of Applied Biology, 166: 18–38.
De Capdeville G., Wilson C.L., Beer S.V., Aist J.R. (2002): Alternative disease control agents induce resistance to blue mold in harvested Red Delicious apple fruit. Phytopathology, 92: 900–908.
Degefu Y., Potrykus M., Golanowska M., Virtanen E., Lojkowska E. (2013): A new clade of Dickeya spp. plays a major role in potato blackleg outbreaks in North Finland. Annals of Applied Biology, 162: 231–241.
Deori M., Jayamohan N.S., Kumudini B.S. (2018): Production, characterization and iron binding affinity of hydroxamate siderophores from rhizosphere associated fluorescent Pseudomonas. Journal of Plant Protection Research, 58: 36–43.
des Essarts Y.R., Cigna J., Quetu-Laurent A., Caron A., Munier E., Beury-Cirou A., Helias V., Faure D. (2016): Biocontrol of the potato blackleg and soft rot diseases caused by Dickeya dianthicola. Applied Environmental and Microbiology, 82: 268–278.
Diallo S., Crépin A., Barbey C., Orange N., Burini J.F., Latour X. (2011): Mechanisms and recent advances in biological control are mediated through the potato rhizosphere. FEMS Microbiology Ecology, 75: 351–364.
Doolotkeldieva T., Bobusheva S., Suleymankisi A. (2016): Biological control of Erwinia carotovora ssp. carotovora by Streptomyces species. Advanced Microbiology, 6: 104–114.
Etminani F., Harighi B. (2018): Isolation and Identification of endophytic bacteria with plant growth-promoting activity and biocontrol potential from wild Pistachio trees. Plant Pathology Journal, 34: 208–217.
FAOSTAT (2015): Food and Agriculture Organisation of the United Nations. Rome, FAO. Available at
Farrar J.J., Nunez J.J., Davis R.M. (2009): Losses due to lenticel rot are an increasing concern for Karen county potato growers. California Agriculture, 63: 127–130.
Fernando W.D., Nakkeeran S., Zhang Y. (2005): Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: Siddiqui Z.A. (ed.): PGPR: Biocontrol and Biofertilization. Dodrecht, Springer: 67–109.
Gallois A., Samson R., Ageron E., Grimont P.A.D. (1992): Erwinia carotovora subsp. odorifera subsp. nov., associated with odorous soft rot of chicory (Cichorium intybus L.). International Journal of Systematic Bacteriology, 42: 582–588.
Garge S.S., Nerurkar A.S. (2017): Evaluation of quorum quenching Bacillus spp. for their biocontrol traits against Pectobacterium carotovorum subsp. carotovorum causing soft rot. Biocatalysis Agriculture and Biotechnology, 9: 48–57.
Ghorbanpour M., Omidvari M., Abbaszadeh-Dahaji P., Omidvar R., Kariman K. (2018): Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biological Control, 117: 147–157.
Gilden R.C., Huffling K., Sattler B. (2010): Pesticides and health risks. European Journal of Obstetrics, Gynecology and Reproductive Biology, 39: 103–110.
Goudjal Y., Zamoum M., Sabaou N., Mathieu F., Zitouni A. (2016): Potential of endophytic Streptomyces spp. for biocontrol of Fusarium root rot disease and growth promotion of tomato seedlings. Biocontrol Science and Technology, 26: 1691–1705.
Gracia-Garza J.A., Blom T.J., Brown W., Allen W. (2002): Pre-and post-plant applications of copper-based compounds to control Erwinia soft rot of calla lilies. Canadian Journal of Plant Pathology, 24: 274–280.
Guevara Y.M., Rondon A.G., Solorzano R. (1980): Bacterial infection of the mango (Mangifera indica L.) in Venezuela. I. Symptomology and identification. Agronomía Tropical, 30: 65–76.
Haas D., Defago G. (2005): Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3: 307–331.
Hajhamed A., Sayed W.M.A.E., Yazied A.A.E., Ghaffar N.Y.A.E. (2007): Suppression of bacterial soft rot disease of potato. Egyptian Journal of Phytopathology, 35: 69–80.
Harman G.E. (2006): Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96: 190–194.
Harman G.E., Howell C.R., Vertibo A., Chet I., Lorito M. (2004): Trichoderma species – Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2: 43–56.
Heidarzadeh N., Baghaee-Ravari S. (2015): Application of Bacillus pumilus as a potential biocontrol agent of Fusarium wilt of tomato. Archives of Phytopathology and Plant Protection, 48: 841–849.
Heimpel G.E., Mills N. (2017): Biological Control: Ecology and Applications. Cambridge, Cambridge University Press.
Heydari A., Misaghi I.J. (2003): The role of rhizosphere bacteria in herbicide-mediated increase in Rhizoctonia solani-induced cotton seedling damping-off. Plant Soil, 257: 391–396.
Heydari A., Fattahi H., Zamanizadeh H.R., Zadeh N.H., Naraghi L. (2004): Investigation on the possibility of using bacterial antagonists for biological control of cotton seedling damping-off in a greenhouse. Applied Entomology and Phytopathology, 72: 51–68.
Hibbing M.E., Fuqua C., Parsek M.R., Peterson S.B. (2010): Bacterial competition: Surviving and thriving in the microbial jungle. Nature Reviews Microbiology, 8: 15–25.
Chakravarti B.P., Rangarajan M. (1966): Occurrence of Erwinia aroideae on two new hosts in India. Plant Disease Report, 50: 701–702.
Charkowski A. (2015): Biology and control of Pectobacterium in potato. American Journal of Potato Research, 92: 223–229.
Chen X., Zhang Y., Fu X., Li Y., Wang Q. (2016): Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot. Postharvest Biological Technology, 115: 113–121.
Choudhary D.K., Johri B.N. (2008): Interactions of Bacillus spp. and plants with special reference to induced systemic resistance (ISR). Microbiology Research, 164: 493–513.
Islam M.T., Hashidoko Y., Deora A., Ito T., Tahara S. (2005): Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Applied Environmental Microbiology, 71: 3786–3796.
Janisiewicz W.J., Peterson D.L. (2004): Susceptibility of the stem pull area of mechanically harvested apples to blue mold decay and its control with a biocontrol agent. Plant Diseases, 88: 662–664.
Jankutė A., Guobužaitė S., Jakubovskis R., Gribniak V., Urbonavičius J. (2020): Investigating viability of alkaliphilic Bacillus species in biological self-healingconcrete. In: FEMS Online Conference on Microbiology, Oct 28–31, 2020, Electronic abstract book.
Jess S., Kildea S., Moody A., Rennick G., Murchie A.K., Cooke L.R. (2014): European Union policy on pesticides: Implications for agriculture in Ireland. Pest and Management Science, 70: 1646–1654.
Jing Y.D., He Z.L., Yang X.E. (2007): Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. Journal of Zhejiang University Science, 8: 192–207.
Jones J.B., Jackson L.E., Balogh B., Obradovic A., Iriarte F.B., Momol M.T. (2007): Bacteriophages for plant disease control. Annual Review of Phytopathology, 45: 245–262.
Kai M., Effmert U., Berg G., Piechulla B. (2007): Volatiles of bacterial antagonists inhibits mycelial growth of the plant pathogen Rhizoctonia solani. Archive Microbiology, 187: 351–360.
Kamysz W., Krolicka A., Bogucka K., Ossowski T., Lukasiak J., Lojkowska E. (2005): Antibacterial activity of synthetic peptides against plant pathogenic Pectobacterium species. Journal of Phytopathology, 153: 313–317.
Kefi A., Ben Slimene I., Karkouch I., Rihouey C., Azaeiz S., Bejaoui M., Belaid R., Cosette P., Jouenne T., Limam F. (2015): Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers. World Journal of Microbiology and Biotechnology, 31: 1967–1976.
Khayi S., des Essarts Y.R., Mondy S., Moumni M., Hélias V., BeuryCirou A., Faure D. (2015): Draft genome sequences of the three Pectobacterium-antagonistic bacteria Pseudomonas brassicacearum PP1-210F and PA1G7 and Bacillus simplex BA2H3. Genome Announcements, 3: e01497-14. doi: 10.1128/genomeA.01497-14
Kieser T., Bibb M.J., Buttner M.J., Chater K.F., Hopwood D.A. (2000): Practical Streptomyces Genetics. Norwich, The John Innes Foundation.
Kloepper J.W. (1993): Plant growth-promoting rhizobacteria as biological control agents. In: Metting FB Jr (ed.): Soil Microbial Ecology. New York, Dekker: 255–274.
Kloepper J.W., Ryu C.M., Zhang S. (2004): Induce systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94: 1259–1266.
Kobayashi D., El-Barrad N.H. (1996): Selection of bacterial antagonists using enrichment cultures for the control of summer patch disease in Kentucky bluegrass. Current Microbiology, 32: 106–110.
Koch E., Becker J.O., Berg G., Hauschild R., Jehle J., Köhl J. (2018): Biocontrol of plant diseases is not an unsafe technology. Journal of Plant Diseases and Protection, 125: 121–125.
Koumoutsi A., Chen X.H., Henne A., Liesegang H., Gabriele H., Franke P., Vater J., Borris R. (2004): Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive lipopeptides in Bacillus amyloliquefaciens strain FZB42. Journal of Bacteriology, 186: 1084–1096.
Krzyzanowska D.M., Potrykus M., Golanowska M., Polonis K., Gwizdek-Wisniewska A., Lojkowska E., Jafra S. (2012): Rhizosphere bacteria as potential biocontrol agents against soft rot caused by various Pectobacterium and Dickeya spp. strains. Journal of Plant Pathology, 94: 367–378.
Leclere V., Bechet M., Adam A., Guez J.S., Wathelet B., Ongena M., Thonart P., Gancel F., Chollet-Imbert M., Jacques P. (2005): Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Applied and Environmental Microbiology, 71: 4577–4584.
Ling N., Xue C., Huang Q.W., Yang X.M., Xu Y.C., Shen Q.R. (2010): Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. BioControl, 55: 673–683.
Liu D. (2017): Promotion of iron nutrition and growth on peanut by Paenibacillus illinoisensis and Bacillus sp. strains in calcareous soil. Brazilian Journal of Microbiology, 48: 656–670.
Lugtenberg B., Rozen D.E., Kamilova F. (2017): Wars between microbes on roots and fruits. F1000Research, 6: 343. doi: 10.12688/f1000research.10696.1
Ma H. (2007): Progress on control of potato soft rot in China. Biotechnology Bulletin, 1: 42–44.
Makhlouf A.H., Abdeen R. (2014): Investigation on the effect of chemical and biological control of bacterial soft rot disease of potato in storage. Journal of Biology, Agriculture and Healthcare, 4: 31–44.
Marimuthu S., Ramamoorthy V., Samiyappan R., Subbian P. (2013): Intercropping system with combined application of Azospirillum and Pseudomonas fluorescens reduces root rot incidence caused by Rhizoctonia bataticola and increases seed cotton yield. Journal of Phytopathology, 161: 405–411.
Massart S., Martinez-Medina M., Jijakli M.H. (2015): Biological control in the microbiome era: Challenges and opportunities. Biological Control, 89: 98–108.
Milgroom M.G., Cortesi P. (2004): Biological control of chestnut blight with hypovirulence: A critical analysis. Annual Review of Phytopathology, 42: 311–338.
Munir S., Li Y., He P., Cui W. (2018): Bacillus subtilis L1-21 possible assessment of inhibitory mechanism against phytopathogens and colonization in different plant hosts. Pakistan Journal of Agriculture Science, 55: 996–1002.
Neeraja C., Anil K., Purushotham P., Suma K., Sarma P. (2010): Biotechnological approaches to develop bacterial chitinases as a bioagent against fungal diseases. Critical Reviews in Biotechnology, 30: 231–241.
Nelkner J., Torres Tejerizo G., Hassa J., Lin T.W., Witte J., Verwaaijen B., Schlüter A. (2019): Genetic potential of the biocontrol agent Pseudomonas brassicacearum (formerly P. trivialis) 3Re2-7 unraveled by genome sequencing and mining, comparative genomics and transcriptomics. Genes, 10: 601. doi: 10.3390/genes10080601
Ngadze E., Coutinho T.A., van der Waals J.E. (2010): First report of soft rot of potatoes caused by Dickeya dadantii in Zimbabwe. Plant Disease, 94: 1263. doi: 10.1094/PDIS-05-10-0361
Nissinen R.M., Männistö M.K., van Elsas J.D. (2012): Endophytic bacterial communities in three arctic plants from low arctic fell tundra are cold-adapted and host-plant specific. FEMS Microbiology Ecology, 82: 510–522.
Oshnoei F.T., Harighi B., Abdollahzadeh J. (2017): Isolation and identification of endophytic bacteria with plant-growth-promoting and biocontrol potential from the oak tree. European Journal for Pathology, 47: 1–8.
Paoletti M.G., Pimentel D. (2000): Environmental risks of pesticides versus genetic engineering for agricultural pest control. Journal of Agricultural and Environmental Ethics, 12: 279–303.
Phokim C., Jitareerat P., Photchanachai S., Cheevadhanarak S. (2006): Detection and classification of soft rot Erwinia of vegetables in Thailand by DNA polymerase chain reaction. In: Proceedings of the 4th International Conference on Managing Quality in Chains – The Integrated View on Fruits and Vegetables Quality, Aug 7, 2006, Bangkok, Thailand: 917–925.
Pieterse C.M.J., Zamioudis C., Berendsen R.L., Weller D.M., Van Wees S.C.M., Bakker P.A.H.M. (2014): Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52: 347–375.
Pritchard L., Glover R.H., Humphris S., Elphinstone J.G., Toth I.K. (2016): Genomics and taxonomy in diagnostics for food security: Soft-rotting enterobacterial plant pathogens. Analytical Methods, 8: 12–24.
Raaijmakers J.M., Mazzola M. (2012): Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annual Reviews of Phytopathology, 50: 403–424.
Rahman M.M., Ali M.E., Khan A.A., Hashim U., Akanda A.M., Hakim M.A. (2012): Characterization and identification of soft rot bacterial pathogens in Bangladeshi potatoes. African Journal of Microbiology Research, 6: 1437–1445.
Rahme L.G., Tan M.W., Le L., Wong S.M., Tompkins R.G., Calderwood S.B., Ausubel F.M. (1997): Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proceedings of the National Academy of Sciences of the United States of America, 94: 13245–13250.
Reinhold-Hurek B., Hurek T. (2011): Living inside plants: Bacterial endophytes. Current Opinion in Plant Biology, 14: 435–443.
Riley M.A., Wertz J.E. (2002): Bacteriocins: Evolution, ecology, and application. Annual Reviews Microbiology, 56: 117–137.
Romanazzi G., Sanzani S.M., Bi Y., Tian S., Martínez P.G., Alkan N. (2016): Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biology and Technology, 122: 82–94.
Romeiro R.S., Sousa R.M., Muchovej J.J., Kimura O. (1988): Soft rot of Peruvian carrot due to Erwinia carotovora in Brazil. Plant Pathology, 37: 300–302.
Romero-Perdomo F., Abril J., Camelo M., Moreno-Galván A., Pastrana I., Rojas-Tapias D., Bonilla R. (2017): Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): Effect in reducing N fertilization. Revista Argentina de Microbiología, 49: 377–383.
Sandra A.I., Wright C.H., Zumoff L.S., Steven V.B. (2001): Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Applied and Environmental Microbiology, 67: 282–292.
Santoyo G., Orozco-Mosqueda M.D.C., Govindappa M. (2012): Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Science and Technology, 22: 855–872.
Selim H.M.M., Gomaa N.M., Essa A.M.M. (2017): Application of endophytic bacteria for the biocontrol of Rhizoctonia solani (Cantharellales: Ceratobasidiaceae) damping-off disease in cotton seedlings. Biocontrol Science and Technology, 27: 81–95.
Shanahan P., O’Sullivan D.J., Simpson P., Glennon J.D., O’Gara F. (1992): Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Applied and Environmental Microbiology, 58: 353–358.
Schuerger A.C., Batzer J.C. (1993): Identification and host range of an Erwinia pathogen causing stem rots on hydroponically grown plants. Plant Disease, 77: 472–477.
Smith M.A. (1944): Bacterial soft rot of spinach. Phytopathology, 34: 747–752.
Spadaro D., Droby S. (2016): Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Science and Technology, 47: 39–49.
Syed Ab Rahman S.F., Singh E., Pieterse C.M.J., Schenk P.M. (2018): Emerging microbial biocontrol strategies for plant pathogens. Plant Sciences, 267: 102–111.
Takimoto S. (1931): A soft rot of sugarbeet and its causal organisms. Annals of the Phytopathological Society of Japan, 2: 350–356.
Tariq M., Yasmin S., Hafeez F.Y. (2010): Biological control of potato black scurf by rhizosphere associated bacteria. Brazilian Journal of Microbiology, 41: 439–451.
Thakore Y. (2006): The bio-bactericide market for global agricultural use. Indian Biotechnology, 2: 194–208.
Vanneste J.L., Yu J. (1996): Biological control of fire blight using Erwinia herbicola Eh252 and Pseudomonas fluorescens A506 separately or in combination. Acta Horticulture, 411: 351–353.
Viveros O.M., Jorquera M.A., Crowley D.E., Gajardo G., Mora M.L. (2010): Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Journal of Soil Science and Plant Nutrition, 10: 293–319.
Walker J. (2004): Bacterial soft rot. In: Chupp C. (ed.): Manual of Vegetable Plant Diseases. New Delhi: Shristi Book Distributors.
Wiesel L., Newton A.C., Elliott I., Booty D., Gilroy E.M., Birch P.R.J. (2014): Molecular effects of resistance elicitors from the biological origin and their potential for crop protection. Frontier Plant Science, 5: 655. doi: 10.3389/fpls.2014. 00
Wilhite S.E., Lumsden R.D., Strancy D.C. (2001): Peptide synthetase gene in Trichoderma virens. Applied and Environmental Microbiology, 67: 5055–5062.
Wimalajeewa D.L.S. (1976): Studies on bacterial soft rot of celery in Vicotoria. Australian Journal of Experimental Agriculture and Animal Husbandry, 16: 915–920.
Yuan W.M., Crawford D.L. (1995): Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Applied and Environmental Microbiology, 61: 3119–3128.
Zang L.S., Wang S., Zhang F., Desneux N. (2020): Biological control with Trichogramma in China: History, present status and perspectives. Annual Review of Entomology, 66: 463–484.
Zhao Y., Li P., Huang K., Wang Y., Hu H., Sun Y. (2013): Control of postharvest soft rot caused by Erwinia carotovora of vegetables by a strain of Bacillus amyloliquefaciens and its potential modes of action. World Journal of Microbiology and Biotechnology, 29: 411–420.
Zhou D., Huang X.F., Chaparro J.M., Badri D.V., Manter D.K. (2016): Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects. Plant Soil, 401: 259–272.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti