Effect of endophytic bacterium, Stenotrophomonas maltophilia JVB5 on sunflowers


Adeleke B.S., Ayangbenro A.S., Babalola O.O. (2022): Effect of endophytic bacterium, Stenotrophomonas maltophilia JVB5 on sunflowers. Plant Protect. Sci., 58: 185–198.

supplementary materialdownload PDF

Identifiable endophytic bacteria with plant growth-promoting traits promise to ensure sustainable agriculture. However, information on the versatility and exploration of sunflower-associated bacteria as bioinoculants is less studied. Here, we present the whole-genome sequence and annotation of Stenotrophomonas maltophilia JVB5 isolated from the sunflower root endosphere from the North West province, South Africa. The whole-genome analysis revealed a genome size of 4 771 305 bp, a sequence read count of 8 764 890, a 66% guanine-cytosine content, 57 tRNAs, 268 contigs, and 4 160 protein-coding genes with functions in various metabolic pathways. Pathways involved in the indole acetic acid production were found in the S. maltophilia JVB5 genome. The whole-genome annotation predicted notable genes involved in bacterial colonisation, antibiosis, and plant growth promotion. The predicted genes are involved in the sulfur metabolism, and the oxidative stress may enhance the plant growth promotion and boost plant the resistance to stress. Upon inoculation, S. maltophilia JVB5 efficiently colonised the sunflower root under greenhouse conditions with a significant improvement on the wet plant weight of 437.20 g compared to the uninoculated control with a 331.04 g wet weight. The genomic analysis revealing specific functional genes in the bacteria genome suggests their bioprospecting in agriculture. Hence, understanding the mechanisms employed by S. maltophilia JVB5 based on the predicted multifunctional genes will help harness their bioresource in sustainable plant health.

Adeleke B.S., Babalola O.O. (2020): The endosphere microbial communities, a great promise in agriculture. International Microbiology, 24: 1–17. https://doi.org/10.1007/s10123-020-00140-2
Adeleke B.S., Ayangbenro A.S., Babalola O.O. (2021): Genomic assessment of Stenotrophomonas indicatrix for improved sunflower plant. Current Genetics, 67: 891–907. https://doi.org/10.1007/s00294-021-01199-8
Alexander A., Singh V.K., Mishra A., Jha B. (2019): Plant growth-promoting rhizobacterium Stenotrophomonas maltophilia BJ01 augments endurance against N2 starvation by modulating physiology and biochemical activities of Arachis hypogea. PLoS One, 14: e0222405. doi: 10.1371/journal.pone.0222405 https://doi.org/10.1371/journal.pone.0222405
Alkahtani M.D., Fouda A., Attia K.A., Al-Otaibi F., Eid A.M., Ewais E.E.D., Hijri M., St-Arnaud M., Hassan S.E.D., Khan N. (2020): Isolation and characterization of plant growth-promoting endophytic bacteria from desert plants and their application as bioinoculants for sustainable agriculture. Agronomy, 10: 1325. doi: 10.3390/agronomy10091325 https://doi.org/10.3390/agronomy10091325
Arkin A.P., Cottingham R.W., Henry C.S., Harris N.L., Stevens R.L., Maslov S., Dehal P., Ware D., Perez F., Canon S. (2018): KBase: The United States department of energy systems biology knowledgebase. Nature Biotechnology, 36: 566–569. https://doi.org/10.1038/nbt.4163
Bashir S., Iqbal A., Hasnain S. (2020): Comparative analysis of endophytic bacterial diversity between two varieties of sunflower Helianthus annuus with their PGP evaluation. Saudi Journal of Biological Sciences, 27: 720–726. https://doi.org/10.1016/j.sjbs.2019.12.010
Battu L., Ulaganathan K. (2020): Whole genome sequencing and identification of host-interactive genes in the rice endophytic Leifsonia sp. KU-LS. Functional and Integrative Genomics, 20: 237–243. https://doi.org/10.1007/s10142-019-00713-z
Babraham Bioinformatics (2011): FastQC: A quality control tool for high throughput sequence data. Cambridge, Babraham Institute. Available at http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Bolger A.M., Lohse M., Usadel B. (2014): Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30: 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Cavalcanti M.I.P., de Carvalho Nascimento R., Rodrigues D.R., Escobar I.E.C., Fraiz A.C.R., de Souza A.P., de Freitas A.D.S., Nóbrega R.S.A., Fernandes-Júnior P.I. (2020): Maize growth and yield promoting endophytes isolated into a legume root nodule by a cross-over approach. Rhizosphere, 15: 100211. doi: 10.1016/j.rhisph.2020.100211 https://doi.org/10.1016/j.rhisph.2020.100211
Cimermancic P., Medema M.H., Claesen J., Kurita K., Brown L.C.W., Mavrommatis K., Pati A., Godfrey P.A., Koehrsen M., Clardy J. (2014): Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell, 158: 412–421. https://doi.org/10.1016/j.cell.2014.06.034
Egamberdieva D., Jabborova D., Berg G. (2016): Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, and nodulation of soybean under salt stress. Plant and Soil, 405: 35–45. https://doi.org/10.1007/s11104-015-2661-8
Egamberdieva D., Alimov J., Shurigin V., Alaylar B., Wirth S., Bellingrath-Kimura S.D. (2022): Diversity and plant growth-promoting ability of endophytic, halotolerant bacteria associated with Tetragonia tetragonioides (Pall.) Kuntze. Plants, 11: 49. doi: 10.3390/plants11010049 https://doi.org/10.3390/plants11010049
Etesami H., Alikhani H.A. (2016): Suppression of the fungal pathogen Magnaporthe grisea by Stenotrophomonas maltophilia, a seed-borne rice (Oryza sativa L.) endophytic bacterium. Archives of Agronomy and Soil Science, 62: 1271–1284. https://doi.org/10.1080/03650340.2016.1139087
Fadiji A.E., Babalola O.O. (2020): Exploring the potentialities of beneficial endophytes for improved plant growth. Saudi Journal of Biological Sciences, 27: 3622–3633. https://doi.org/10.1016/j.sjbs.2020.08.002
Fouda A., Eid A.M., Elsaied A., El-Belely E.F., Barghoth M.G., Azab E., Gobouri A.A., Hassan S.E.D. (2021): Plant growth-promoting endophytic bacterial community inhabiting the leaves of Pulicaria incisa (Lam.) DC Inherent to arid regions. Plants, 10: 76. doi: 10.3390/plants10010076 https://doi.org/10.3390/plants10010076
Guerrieri M.C., Fiorini A., Fanfoni E., Tabaglio V., Cocconcelli P.S., Trevisan M., Puglisi E. (2021): Integrated genomic and greenhouse assessment of a novel plant growth-promoting rhizobacterium for tomato plant. Frontiers in Plant Science, 12: 660620. doi: 10.3389/fpls.2021.660620 https://doi.org/10.3389/fpls.2021.660620
Guo D.J., Singh R.K., Singh P., Li D.P., Sharma A., Xing Y.X., Song X.P., Yang L.T., Li Y.R. (2020): Complete genome sequence of Enterobacter roggenkampii ED5, a nitrogen fixing plant growth promoting endophytic bacterium with biocontrol and stress tolerance properties, isolated from sugarcane root. Frontiers in Microbiology, 11: 2270. doi: 10.3389/fmicb.2020.580081 https://doi.org/10.3389/fmicb.2020.580081
Gupta A., Gopal M., Thomas G.V., Manikandan V., Gajewski J., Thomas G., Seshagiri S., Schuster S.C., Rajesh P., Gupta R. (2014): Whole genome sequencing and analysis of plant growth promoting bacteria isolated from the rhizosphere of plantation crops coconut, cocoa and arecanut. PLoS One, 9: e104259. doi: 10.1371/journal.pone.0104259.t005
Gutierrez C.K., Matsui G.Y., Lincoln D.E., Lovell C.R. (2009): Production of the phytohormone indole-3-acetic acid by estuarine species of the genus Vibrio. Applied and Environmental Microbiology, 75: 2253–2258. https://doi.org/10.1128/AEM.02072-08
Haidar B., Ferdous M., Fatema B., Ferdous A.S., Islam M.R., Khan H. (2018): Population diversity of bacterial endophytes from jute (Corchorus olitorius) and evaluation of their potential role as bioinoculants. Microbiological Research, 208: 43–53. https://doi.org/10.1016/j.micres.2018.01.008
Hubrich F., Müller M., Andexer J.N. (2021): Chorismate-and isochorismate converting enzymes: Versatile catalysts acting on an important metabolic node. Chemical Communications, 57: 2441–2463. https://doi.org/10.1039/D0CC08078K
Huelsenbeck J.P., Ronquist F. (2001): MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17: 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
Igiehon N.O., Babalola O.O., Aremu B.R. (2019): Genomic insights into plant growth promoting rhizobia capable of enhancing soybean germination under drought stress. BMC Microbiology, 19: 159. doi: 10.1186/s12866-019-1536-1 https://doi.org/10.1186/s12866-019-1536-1
Kang S.M., Asaf S., Khan A.L., Khan A., Mun B.G., Khan M.A., Gul H., Lee I.J. (2020): Complete genome sequence of Pseudomonas psychrotolerans CS51, a plant growth-promoting bacterium, under heavy metal stress conditions. Microorganisms, 8: 382. doi: 10.3390/microorganisms8030382 https://doi.org/10.3390/microorganisms8030382
Kasim W.A., Osman M.E., Omar M.N., Salama S. (2021): Enhancement of drought tolerance in Triticum aestivum L. seedlings using Azospirillum brasilense NO40 and Stenotrophomonas maltophilia B11. Bulletin of the National Research Centre, 45: 95. doi: 10.1186/s42269-021-00546-6 https://doi.org/10.1186/s42269-021-00546-6
Khalil A.M.A., Hassan S.E.D., Alsharif S.M., Eid A.M., Ewais E.E.D., Azab E., Gobouri A.A., Elkelish A., Fouda A. (2021): Isolation and characterization of fungal endophytes isolated from medicinal plant Ephedra pachyclada as plant growth-promoting. Biomolecules, 11: 140. doi: 10.3390/biom11020140 https://doi.org/10.3390/biom11020140
Khamwan S., Boonlue S., Riddech N., Jogloy S., Mongkolthanaruk W. (2018): Characterization of endophytic bacteria and their response to plant growth promotion in Helianthus tuberosus L. Biocatalysis and Agricultural Biotechnology, 13: 153–159. https://doi.org/10.1016/j.bcab.2017.12.007
Khan M.S., Gao J., Zhang M., Chen X., Du Y., Yang F., Xue J., Zhang X. (2020): Isolation and characterization of plant growth-promoting endophytic bacteria Bacillus stratosphericus LW-03 from Lilium wardii. 3 Biotech, 10: 305. doi: 10.1007/s13205-020-02294-2 https://doi.org/10.1007/s13205-020-02294-2
Li R., Feng Y., Chen H., Zhang C., Huang Y., Chen L., Hao Q., Cao D., Yuan S., Zhou X. (2020): Whole-genome sequencing of Bradyrhizobium diazoefficiens 113-2 and comparative genomic analysis provide molecular insights into species specificity and host specificity. Frontiers in Microbiology, 11: 576800. doi: 10.3389/fmicb.2020.576800 https://doi.org/10.3389/fmicb.2020.576800
Liaquat F., Munis M.F.H., Arif S., Haroon U., Shengquan C., Qunlu L. (2020): Cd-tolerant SY-2 strain of Stenotrophomonas maltophilia: A potential PGPR, isolated from the Nanjing mining area in China. 3 Biotech, 10: 519. doi: 10.1007/s13205-020-02524-7 https://doi.org/10.1007/s13205-020-02524-7
Liu W., Wang Q., Hou J., Tu C., Luo Y., Christie P. (2016): Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A. Scientific Reports, 6: 26710. doi: 10.1038/srep26710 https://doi.org/10.1038/srep26710
Majeed A., Abbasi M.K., Hameed S., Imran A., Rahim N. (2015): Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. Frontiers in Microbiology, 6: 198. doi: 10.3389%2Ffmicb.2015.00198 https://doi.org/10.3389/fmicb.2015.00198
Nascimento F.X., Hernández A.G., Glick B.R., Rossi M.J. (2020a): Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest. Biotechnology Reports, 25: 406. doi: 10.1016/j.btre.2019.e00406  https://doi.org/10.1016/j.btre.2019.e00406
Nascimento F.X., Hernandez A.G., Glick B.R., Rossi M.J. (2020b): The extreme plant-growth-promoting properties of Pantoea phytobeneficialis MSR2 revealed by functional and genomic analysis. Environmental Microbiology, 22: 1341–1355. https://doi.org/10.1111/1462-2920.14946
Nurk S., Bankevich A., Antipov D., Gurevich A.A., Korobeynikov A., Lapidus A., Prjibelski A.D., Pyshkin A., Sirotkin A., Sirotkin Y. (2013): Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. Journal of Computational Biology, 20: 714–737. https://doi.org/10.1089/cmb.2013.0084
Nwachukwu B.C., Ayangbenro A.S., Babalola O.O. (2021): Comparative study of microbial structure and functional profle of sunfower rhizosphere grown in two felds. BMC Microbiology, 21: 337. doi: 10.1186/s12866-021-02397-7 https://doi.org/10.1186/s12866-021-02397-7
Oliverio A.M., Bissett A., McGuire K., Saltonstall K., Turner B.L., Fierer N. (2020): The role of phosphorus limitation in shaping soil bacterial communities and their metabolic capabilities. Mbio, 11: e01718. doi: 10.1128/mBio.01718-20 https://doi.org/10.1128/mBio.01718-20
Passari A.K., Chandra P., Mishra V.K., Leo V.V., Gupta V.K., Kumar B., Singh B.P. (2016): Detection of biosynthetic gene and phytohormone production by endophytic actinobacteria associated with Solanum lycopersicum and their plant-growth-promoting effect. Research in Microbiology, 167: 692–705. https://doi.org/10.1016/j.resmic.2016.07.001
Pinski A., Zur J., Hasterok R., Hupert-Kocurek K. (2020): Comparative genomics of Stenotrophomonas maltophilia and Stenotrophomonas rhizophila revealed characteristic features of both species. International Journal of Molecular Sciences, 21: 4922. doi: 10.3390%2Fijms21144922 https://doi.org/10.3390/ijms21144922
Rahman M.D.M., Flory E., Koyro H.W., Abideen Z., Schikora A., Suarez C., Schnell S., Cardinale M. (2018): Consistent associations with beneficial bacteria in the seed endosphere of barley (Hordeum vulgare L.). Systematic and Applied Microbiology, 41: 386–398. https://doi.org/10.1016/j.syapm.2018.02.003
Rojas-Solís D., Zetter-Salmón E., Contreras-Pérez M., del Carmen Rocha-Granados M., Macías-Rodríguez L., Santoyo G. (2018): Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatalysis and Agricultural Biotechnology, 13: 46–52. https://doi.org/10.1016/j.bcab.2017.11.007
Samaras A., Nikolaidis M., Antequera-Gómez M.L., Cámara-Almirón J., Romero D., Moschakis T., Amoutzias G.D., Karaoglanidis G.S. (2020): Whole genome sequencing and root colonization studies reveal novel insights in the biocontrol potential and growth promotion by Bacillus subtilis MBI 600 on cucumber. Frontiers in Microbiology, 11: 600393. doi: 10.3389/fmicb.2020.600393 https://doi.org/10.3389/fmicb.2020.600393
Shastry R.P., Welch M., Rai V.R., Ghate S.D., Sandeep K., Rekha P. (2020): The whole-genome sequence analysis of Enterobacter cloacae strain Ghats1: Insights into endophytic lifestyle-associated genomic adaptations. Archives of Microbiology, 202: 1571–1579. https://doi.org/10.1007/s00203-020-01848-5
Singh R.K., Singh P., Li H.B., Guo D.J., Song Q.Q., Yang L.T., Malviya M.K., Song X.P., Li Y.R. (2020): Plant-PGPR interaction study of plant growth-promoting diazotrophs Kosakonia radicincitans BA1 and Stenotrophomonas maltophilia COA2 to enhance growth and stress-related gene expression in Saccharum spp. Journal of Plant Interactions, 15: 427–445. https://doi.org/10.1080/17429145.2020.1857857
Singh P., Singh R.K., Guo D.J., Sharma A., Singh R.N., Li D.P., Malviya M.K., Song X.P., Lakshmanan P., Yang L.T. (2021): Whole genome analysis of sugarcane root-associated endophyte Pseudomonas aeruginosa B18 – A plant growth-promoting bacterium with antagonistic potential against Sporisorium scitamineum. Frontiers in Microbiology, 12: 104. doi: 10.3389/fmicb.2021.628376 https://doi.org/10.3389/fmicb.2021.628376
Ulrich K., Kube M., Becker R., Schneck V., Ulrich A. (2021): Genomic analysis of the endophytic Stenotrophomonas strain 169 reveals features related to plant-growth promotion and stress tolerance. Frontiers in Microbiology, 12: 1542. doi: 10.3389/fmicb.2021.687463 https://doi.org/10.3389/fmicb.2021.687463
Wang L., Lin H., Dong Y., Li B., He Y. (2020): Effects of endophytes inoculation on rhizosphere and endosphere microecology of Indian mustard (Brassica juncea) grown in vanadium-contaminated soil and its enhancement on phytoremediation. Chemosphere, 240: 124891. doi: 10.1016/j.chemosphere.2019.124891 https://doi.org/10.1016/j.chemosphere.2019.124891
Weber T., Blin K., Duddela S., Krug D., Kim H.U., Bruccoleri R., Lee S.Y., Fischbach M.A., Müller R., Wohlleben W. (2015): antiSMASH 3.0 – A comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Research, 43: 237–243. https://doi.org/10.1093/nar/gkv437
Westoby M., Nielsen D.A., Gillings M.R., Litchman E., Madin J.S., Paulsen I.T., Tetu S.G. (2021): Cell size, genome size, and maximum growth rate are near-independent dimensions of ecological variation across bacteria and archaea. Ecology and Evolution, 11: 3956–3976. https://doi.org/10.1002/ece3.7290
Wu Y., Wang Y., Li J., Hu J., Chen K., Wei Y., Bazhanov D.P., Bazhanova A.A., Yang H. (2015): Draft genome sequence of Stenotrophomonas maltophilia strain B418, a promising agent for biocontrol of plant pathogens and root-knot nematode. Genome Announcements, 3: 15. doi: 10.1128/genomea.00015-15 https://doi.org/10.1128/genomeA.00015-15
Youseif S.H. (2018): Genetic diversity of plant growth promoting rhizobacteria and their effects on the growth of maize plants under greenhouse conditions. Annals of Agricultural Sciences, 63: 25–35. https://doi.org/10.1016/j.aoas.2018.04.002
Zeng Q., Xie J., Li Y., Gao T., Xu C., Wang Q. (2018): Comparative genomic and functional analyses of four sequenced Bacillus cereus genomes reveal conservation of genes relevant to plant-growth-promoting traits. Scientific Reports, 8: 17009. doi: 10.1038/s41598-018-35300-y https://doi.org/10.1038/s41598-018-35300-y
Zheng H., Mao Y., Teng J., Zhu Q., Ling J., Zhong Z. (2015): Flagellar-dependent motility in Mesorhizobium tianshanense is involved in the early stage of plant host interaction: Study of an flgE mutant. Current Microbiology, 70: 219–227. https://doi.org/10.1007/s00284-014-0701-x
Zhu B., Liu H., Tian W.X., Fan X.Y., Li B., Zhou X.P., Jin G.L., Xie G.L. (2012): Genome sequence of Stenotrophomonas maltophilia RR-10, isolated as an endophyte from rice root. Journal of Bacteriology, 194: 1280–1281. https://doi.org/10.1128/JB.06702-11
supplementary materialdownload PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti