Use of gene family analysis to discover argonaut (AGO) genes for increasing the resistance of Tibetan hull-less barley to leaf stripe disease

Yao X., Wang Y., Yao Y., An L., Bai X., Li X., Wu K., Qiao Y. (2021): Use of gene family analysis to discover argonaut (AGO) genes for increasing the resistance of Tibetan hull-less barley to leaf stripe disease. Plant Protect. Sci., 57: 226–239.

supplementary materialdownload PDF

Leaf stripe is a common, but major infectious disease of barley, severely affecting the yield and quality. However, only a few genes have been identified by conventional gene mapping. Gene family analysis has become a fast and efficient strategy for gene discovery. Studies demonstrated that Argonaute (AGO) proteins play an important role in plant disease resistance. Thus, we obtained nine HvAGO genes via mRNA sequencing before and after a Pyrenophora graminea infection of a disease-resistant variety "Kunlun 14" and a susceptible variety "Z1141". We analysed the physicochemical characteristics, gene structures, and motifs of the HvAGO gene sequences and found that these proteins were divided into four clusters by evolutionary distance. There was high consistency in the number of exons, size, and the number and type of motifs in the different clusters. Based on protein phylogenetics, they could be divided into three branches. A collinearity analysis of Tibetan hull-less barley and Arabidopsis thaliana, rice, and maize showed that four genes were collinear with respect to the other three species. The qRT-PCR showed the expression levels of HvAGO1, HvAGO2 and HvAGO4 were significantly increased after infection with Pyrenophora graminea. These three members of the AGO gene family are, thus, speculated to play an important role in barley leaf stripe resistance. The results provide reference for the application of HvAGO genes in the leaf stripe control and the exploration of disease resistance genes in other crops.

Agorio A., Vera P. (2007): Argonaute4 is required for resistance to Pseudomonas syringae in Arabidopsis. Plant Cell, 19: 3778–3790.
Arabi M.I.E., Jawhar M., Al-Safadi B., Mirali N. (2004): Yield responses of barley to leaf stripe (Pyrenophora graminea) under experimental conditions in southern Syria. Journal of Phytopathology, 152: 519–523.
Arru L., Francia E., Pecchioni N. (2003): Isolate-specific QTLs of resistance to leaf stripe (Pyrenophora graminea) in the 'Steptoe' × 'Morex' spring barley cross. Theoretical and Applied Genetics, 106: 668–675.
Arru L., Niks R.E., Lindhout P., Valé G., Francia E., Pecchioni N. (2002): Genomic regions determining resistance to leaf stripe (Pyrenophoragraminea) in barley. Genome, 45: 460–466.
Bai M., Yang G.S., Chen W.T., Mao Z.C., Kang H.X., Chen G.H., Yang Y.H., Xie B.Y. (2012): Genome-wide identification of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analyses in response to viral infection and abiotic stresses in Solanum lycopersicum. Gene, 501: 52–62.
Banu M.S.A., Huda K.M.K., Sahoo R.K., Garg B., Tula S., Islam S.M.S., Tuteja R., Tuteja N. (2015): Pea p68 imparts salinity stress tolerance in rice by scavenging of ROS-mediated H2O2 and interacts with argonaute. Plant Molecular Biology Reporter, 33: 221–238.
Biselli C., Bulgarelli D., Collins N.C., Schulze-Lefert P., Stanca A.M., Cattivelli L., Valè G. (2013a): The CC-NB-LRR-type Rdg2a resistance gene evolved through recombination and confers immunity to the seed-borne barley leaf stripe pathogen in the absence of hypersensitive cell death. In: Advance in Barley Sciences. Proceedings of 11th International Barley Genetics Symposium. Dordrecht, Springer: 217–228.
Biselli C., Urso S., Bernardo L., Tondelli A., Tacconi G., Martino V., Grando S., Valè G. (2010): Identification and mapping of the leaf stripe resistance gene Rdg1a in Hordeum spontaneum. Theoretical and Applied Genetics, 120: 1207–1218.
Biselli C., Urso S., Tacconi G., Steuernagel B., Schulte D., Gianinetti A., Bagnaresi P., Stein N., Cattivelli L., Valè G. (2013b): Haplotype variability and identification of new functional alleles at the Rdg2a leaf stripe resistance gene locus. Theoretical and Applied Genetics, 126: 1575–1586.
Bohmert K., Camus I., Bellini C., Bouchez D., Caboche M., Benning C. (1998): AGO1 defines a novel locus of Arabidopsis controlling leaf development. The EMBO Journal, 17: 170–180.
Bulgarelli D., Biselli C., Collins N.C., Consonni G., Stanca A.M., Schulze-Lefert P., Valè G. (2010): The CC-NB-LRR-type Rdg2a resistance gene confers immunity to the seed-borne barley leaf stripe pathogen in the absence of hypersensitive cell death. PLoS One, 5:e12599. doi: 10.1371/journal.pone.0012599
Cao J.Y., Xu Y.P., Zhao L., Li S S., Cai X.Z. (2016): Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level. Plant Molecular Biology, 92: 39–55.
Chandra S., Kazmi A.Z., Ahmed Z., Roychowdhury G., Kumari V., Kumar M. (2017): Genome-wide identification and characterization of NB-ARC resistant genes in wheat (Triticum aestivum L.) and their expression during leaf rust infection. Plant Cell Report, 36: 1–16.
Faccioli P., Provero P., Herrmann C., Stanca A.M., Morcia C., Terzi V. (2005): From single genes to co-expression networks: Extracting knowledge from barley functional genomics. Plant Molecular Biology, 58: 739–750.
Gerechter-Amitai Z.K., Wahl I., Vardi A., Zohary D. (1971): Transfer of stem rust seedling resistance from wild diploid einkorn to tetraploid durum wheat by means of a triploid hybrid bridge. Euphytica, 20: 281–285.
Haegi A., Bonardi V., Dall'Aglio E., Glissant D., Tumino G., Collins N.C., Bulgarelli D., Infantino A., Stanca A.M., Delledonne M., Valè G. (2008): Histological and molecular analysis of Rdg2a barley resistance to leaf stripe. Molecular Plant Pathology, 9: 463–478.
Hamar É., Szaker H.M., Kis A., Dalmadi Á., Miloro F., Szittya G., Taller J., Gyula P., Csorba T., Havelda Z. (2020): Genome-wide identification of RNA silencing-related genes and their expressional analysis in response to heat stress in Barley (Hordeum vulgare L.). Biomolecules, 10: 929. doi: 10.3390/biom10060929
Hutvagner G., Simard M.J. (2008): Argonaute proteins: Key players in RNA silencing. Molecular and Cellular Biology, 9: 463–478.
Jaubert M., Bhattacharjee S., Mello A.F.S., Perry K.L., Moffett P. (2011): Argonaute2 mediates RNA-silencing antiviral defenses against potato virus X in arabidopsis. Plant Physiology, 156: 1556–1564.
Kapoor M., Arora R., Lama T., Nijhawan A., Khurana J.P., Tyagi A.K., Kapoor S. (2008): Genome-wide identification, organization and phylogenetic analysis of Dicer-like, Argonaute and RNA dependent RNA polymerase gene families and their expression analysis during reproductive development and stress in rice. BMC Genomics, 9: 451.
Kim K.W., Eamens A.L., Waterhouse P.M. (2011): RNA processing activities of the Arabidopsis argonaute protein family. RNA Processing. doi: 10.5772/22686.
Kumar G., Singh A., Vinutha T., Kumar S., Kumar R.R., Praveen S. (2017): Possible role of miRNAs and their targets, in modulating leaf morphology and plant growth during Leaf curl virus infection in tomato. Indian Journal of Plant Physiology, 22: 608–615.
Li Y.L., Long C.L., Kato K.J, Yang C.Y., Sato K. (2011): Indigenous knowledge and traditional conservation of hulless barley (Hordeum vulgare) germplasm resources in the Tibetan communities of Shangri-la, Yunnan, SW China. Genetic Resources and Crop Evolution, 58: 645–655.
Li D., Long D., Li T., Wu Y., Wang Y., Zeng J., Xu L., Fan X., Sha L., Zhang H. (2018): Cytogenetics and stripe rust resistance of wheat – Thinopyrum elongatum hybrid derivatives. Molecular Cytogenetics, 11: 16. doi: 10.1186/s13039-018-0366-4
Liang J.J., Deng G.D., Long H., Pan Z.F., Wang C.P., Cai P., Xu D.L., Nimaand Z.X., Yu M.Q. (2012): Virus-induced silencing of genes encoding LEA protein in Tibetan hulless barley (Hordeum vulgare ssp. vulgare) and their relationship to drought tolerance. Molecular Breedin, 30: 441–451.
Liu C., Xin Y., Xu L., Cai Z., Xue Y., Liu Y., Xie D.X., Liu Y.L., Qi Y.J. (2018): Arabidopsis argonaute 1 binds chromatin to promote gene transcription in response to hormones and stresses. Developmental Cell, 44: 348–361.
Liu D.G. (2012): Review of crop pest control in Qinghai province in 20 years. Qinghai Agricultural Technology Extension, 1: 30–32.
Liu Y.R., Cui J., Zhou X.X., Luan Y.S. (2020): Genome-wide identification, characterization and expression analysis of the TLP gene family in melon (Cucumis melo L.). Genomics, 112: 2499–2509.
Niedojadło K., Kupiecka M., Kołowerzo-Lubnau A., Lenartowski R., Bednarska-Kozakiewicz E. (2020): Dynamic distribution of ARGONAUTE1 (AGO1) and ARGONAUTE4 (AGO4) in Hyacinthus orientalis L. pollen grains and pollen tubes growing in vitro. Protoplasma, 257: 793–805.
Pecchioni N., Faccioli P., Toubia-Rahme H., Valè G., Terzi V. (1996): Quantitative resistance to barley leaf stripe (Pyrenophora graminea) is dominated by one major locus. Theoretical and Applied Genetics, 93: 97–101.
Pfaffl M.W. (2001): A new mathematical model for relative quantification in real-time RT–PCR. Nuclc Acids Research, 29: e45. doi: 10.1093/nar/29.9.e45
Qian Y., Cheng Y., Cheng X., Jiang H., Zhu S., Cheng B. (2011): Identification and characterization of Dicer-like, Argonaute and RNA dependent RNA polymerase gene families in maize. Plant Cell Reports, 30: 1347–1363.
Richardson K.L., Vales M.I., Kling J.G., Mundt C.C., Hayes P.M. (2006): Pyramiding and dissecting disease resistance QTL to barley stripe rust. Theoretical and Applied Genetics, 113: 485–495.
Sabbione A., Daurelio L., Vegetti A., Talon M., Tadeo F., Dotto M. (2019): Genome-wide analysis of AGO, DCL and RDR gene families reveals RNA-directed DNA methylation is involved in fruit abscission in Citrus sinensis. BMC Plant Biology, 19: 401. doi: 10.1186/s12870-019-1998-1
Shao F.J., Lu S.F. (2013): Genome-wide identification, molecular cloning, expression profiling and posttranscriptional regulation analysis of the Argonaute gene family in Salvia miltiorrhiza, an emerging model medicinal plant. BMC Genomics, 14: 512. doi: 10.1186/1471-2164-14-512
Si E., Meng Y., Ma X., Li B., Wang H. (2020): Genome resource for barley leaf stripe pathogen Pyrenophora graminea. Plant Disease, 104: 320–322.
Si E., Meng Y., Ma X., Li B., Wang J., Ren P., Yao L., Yang K., Zhang Y., Shang X., Wang H. (2019): Development and characterization of microsatellite markers based on whole-genome sequences and pathogenicity differentiation of Pyrenophora graminea, the causative agent of barley leaf stripe. European Journal of Plant Pathology, 154: 227–241.
Skorda E.A. (1974): Control of wheat bunt and barley stripe disease by seed disinfection with new fungicides. Geoponika, 20: 301–310.
Skou J.P., Haahr V. (1987): Screening for and Inheritance of Resistance to Barley Leaf Stripe (Drechslera graminea). Frederiksborgvej, Riso National Laboratory.
Song J.J., Joshua-Tor L. (2006): Argonaute and RNA-getting into the groove. Current Opinion in Structural Biology, 16: 5–11.
Srideepthi R., Krishna M.S.R., Suneetha P., Krishna R.S., Karthikeyan S. (2020): Genome-wide identification, characterization and expression analysis of non-RD receptor like kinase gene family under Colletotrichum truncatum stress conditions in hot pepper. Genetica, 148: 283–296.
Tacconi G., Cattivelli L., Faccini N., Pecchioni N., Stanca A.M., Valé G. (2001): Identification and mapping of a new leaf stripe resistance gene in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 102: 1286–1291.
Vaucheret H. (2008): Plant argonautes. Trends in Plant Science, 13: 350–358.
Wang Y., Juranek S., Li H., Sheng G., Tuschl T., Patel D.J. (2008): Structure of an Argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature, 456: 921–926.
Wu J., Yang Z., Wang Y., Zheng L., Ye R., Ji Y., Zhao S., Ji S., Liu R., Xu L., Zheng H., Zhou Y., Zhang X., Cao X., Xie L., Wu Z., Qi Y., Li Y. (2015): Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. ELife, 4: e05733. doi: 10.7554/eLife.05733
Wu K.L., Yao X.H., Yao Y.H., Chi D.Z., Feng Z.Y. (2017): Analysis of the relationship between Wx gene polymorphisms and amylose content in hulless barley. Czech Journal of Genetics and Plant Breeding, 53: 144–152.
Xu R., Liu C., Li N. Zhang S.Z. (2016): Global identification and expression analysis of stress-responsive genes of the Argonaute family in apple. Molecular Genetics and Genomics, 291: 2015–2030.
Yan H., Wu F. Jiang G., Xiao L., Li Z., Duan X. (2019): Genome-wide identification, characterization and expression analysis of NF-Y gene family in relation to fruit ripening in banana. Postharvest Biology and Technology, 151: 98–110.
Yan J.H., Yao Q., Guo Q.Y., Chen H.M., Hou L., Xu S.C. (2016): Control effect of four seed coatings on barley leaf stripe caused by Drechslera gramine. Plant Protection, 42: 233–236.
Yao X.H., Wu K.L., Yao Y.H., Bai Y.X., Ye J.X., Chi D.Z. (2018): Construction of a high-density genetic map: genotyping by sequencing (GBS) to map purple seed coat color (Psc) in hulless barley. Hereditas, 155: 37. doi: 10.1186/s41065-018-0072-6
Zeng X., Guo Y., Xu Q., Mascher M., Guo G., Li S., Mao L., Liu Q., Xia Z., Zhou J., Yuan H., Tai S., Wang Y., Wei Z., Song L., Zha S., Li S., Tang Y., Bai L., Zhuang Z., He W., Zhao S., Fang X., Gao Q., Yin Y., Wang J., Yang H., Zhang J., Henry R.J., Stein N., Tashi N. (2018): Origin and evolution of qingke barley in Tibet. Nature Communications, 9: 5433. doi: 10.1038/s41467-018-07920-5
supplementary materialdownload PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti