Akino S., Takemoto D., Hosaka K. (2014): Phytophthora infestans: A review of past and current studies on potato late blight. Journal of General Plant Pathology, 80: 24–37.
https://doi.org/10.1007/s10327-013-0495-x
Attard A., Gourgues M., Galiana E., Panabières F., Ponchet M., Keller H. (2008): Strategies of attack and defense in plant-oomycete interactions, accentuated for Phytophthora parasitica Dastur (syn. P. nicotianae Breda de Haan). Journal of Plant Physiology, 165: 83–94.
https://doi.org/10.1016/j.jplph.2007.06.011
Benhamou N., Bélanger R.R., Rey P., Tirilly Y. (2001): Oligandrin, the elicitin-like protein produced by the mycoparasite Pythium oligandrum, induces systemic resistance to Fusarium crown and root rot in tomato plants. Plant Physiology and Biochemistry, 39: 681–696.
https://doi.org/10.1016/S0981-9428(01)01283-9
Blein J.P., Coutos-Thévenot P., Marion D., Ponchet M. (2002): From elicitins to lipid-transfer proteins: A new insight in cell signalling involved in plant defence mechanisms. Trends in Plant Science, 7: 293–296.
https://doi.org/10.1016/S1360-1385(02)02284-7
Boissy G., De La Fortelle E., Kahn R., Huet J.C., Bricogne G., Pernollet J.C., Brunie S. (1996): Crystal structure of a fungal elicitor secreted by Phytophthora cryptogea, a member of a novel class of plant necrotic proteins. Structure, 4: 1429–1439.
https://doi.org/10.1016/S0969-2126(96)00150-5
Boissy G., O'Donohue M., Gaudemer O., Perez V., Pernollet J.C., Brunie S. (1999): The 2.1 A structure of an elicitin-ergosterol complex: a recent addition to the Sterol Carrier Protein family. Protein Science, 8: 1191–1199.
https://doi.org/10.1110/ps.8.6.1191
Bourque S., Dutartre A., Hammoudi V., Blanc S., Dahan J., Jeandroz S., Pichereaux C., Rossignol M., Wendehenne D. (2011): Type-2 histone deacetylases as new regulators of elicitor-induced cell death in plants. New Phytologist, 192: 127–139.
https://doi.org/10.1111/j.1469-8137.2011.03788.x
Chaparro-Garcia A., Wilkinson R.C., Gimenez-Ibanez S., Findlay K., Coffey M.D., Zipfel C., Rathjen J.P., Kamoun S., Schornack S. (2011): The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen Phytophthora infestans in Nicotiana benthamiana. PLoS ONE, 6(1): e16608. doi: 10.1371/journal.pone.0016608
https://doi.org/10.1371/journal.pone.0016608
Chaparro-Garcia A., Schwizer S., Sklenar J., Yoshida K., Petre B., Bos J.I.B., Schornack S., Jones A.M.E., Bozkurt T.O., Kamoun S. (2015): Phytophthora infestans RXLR-WY effector AVR3a associates with dynamin-related protein 2 required for endocytosis of the plant pattern recognition receptor FLS2. PLoS ONE: 10(9): e0137071. doi: 10.1371/journal.pone.0137071
https://doi.org/10.1371/journal.pone.0137071
Colas V., Conrod S., Venard P., Keller H., Ricci P., Panabieres F. (2001): Elicitin genes expressed in vitro by certain tobacco isolates of Phytophthora parasitica are down regulated during compatible interactions. Molecular Plant-Microbe Interactions, 14: 326–335.
https://doi.org/10.1094/MPMI.2001.14.3.326
Dalio R.J.D., Magãlhaes D.M., Rodrigues C.M., Arena G.D., Oliveira T.S., Souza-Neto R.R., Picchi S.C., Martins P.M.M., Santos P.J.C., Maximo H.J., Pacheco I., De Souza A., Machado M. (2017): PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. Annals of Botany, 119: 749–774.
Derevnina L., Dagdas Y.F., De la Concepcion J.C., Bialas A., Kellner R., Petre B., Domazakis E., Du J., Wu C.H., Lin X., Aguilera-Galvez C., Cruz-Mireles N., Vleeshouwers V.G.A.A, Kamoun S. (2016): Nine things to know about elicitins. New Phytologist, 212: 888–895.
https://doi.org/10.1111/nph.14137
Devergne J.-C., Bonnet P., Panabières F., Blein J.-P., Ricci P. (1992): Migration of the fungal protein cryptogein within tobacco plants. Plant Physiology, 99: 843–847.
https://doi.org/10.1104/pp.99.3.843
Dokládal L., Obořil M., Stejskal K., Zdráhal Z., Ptáčková N., Chaloupková R., Damborský J., Kašparovský T., Jeandroz S., Žďárská M., Lochman J. (2012): Physiological and proteomic approaches to evaluate the role of sterol binding in elicitin-induced resistance. Journal of Experimental Botany, 63: 2203–2215.
https://doi.org/10.1093/jxb/err427
Domazakis E., Wouters D., Visser R.G.F., Kamoun S., Joosten M.H.A.J., Vleeshouwers V.G.A.A. (2018): The ELR-SOBIR1 complex functions as a two-component receptor-like kinase to mount defense against Phytophthora infestans. Molecular Plant-Microbe Interactions, 31: 795–802.
https://doi.org/10.1094/MPMI-09-17-0217-R
Du J., Verzaux E., Chaparro-Garcia A., Bijsterbosch G., Keizer L.C., Zhou J., Liebrand T.W., Xie C., Govers F., Robatzek S. (2015): Elicitin recognition confers enhanced resistance to Phytophthora infestans in potato. Nature Plants, 1: 15034. doi: 10.1038/nplants.2015.34
https://doi.org/10.1038/nplants.2015.34
Fefeu S., Bouaziz S., Huet J.C., Pernollet J.C., Guittet E. (1997): Three-dimensional solution structure of beta cryptogein, a beta elicitin secreted by a phytopathogenic fungus Phytophthora cryptogea. Protein Science: A Publication of the Protein Society, 6: 2279–2284.
https://doi.org/10.1002/pro.5560061101
Gooley P.R., Keniry M.A., Dimitrov R.A., Marsh D.E., Keizer D.W., Gayler K.R., Grant B.R. (1998): The NMR solution structure and characterization of pH dependent chemical shifts of the beta-elicitin, cryptogein. Journal of Biomolecular NMR, 12: 523–534.
https://doi.org/10.1023/A:1008395001008
Heese A., Hann D.R., Gimenez-Ibanez S., Jones A.M.E., He K., Li J., Schroeder J.I., Peck S.C., Rathjen J.P. (2007): The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proceedings of the National Academy of Sciences, 104: 12217–12222.
https://doi.org/10.1073/pnas.0705306104
Hendrix J.W. (1970): Sterols in growth and reproduction of fungi. Annual Review of Phytopathology, 8: 111–130.
https://doi.org/10.1146/annurev.py.08.090170.000551
Jiang R.H.Y., Tyler B.M., Whisson S.C., Hardham A.R., Govers F. (2006): Ancient origin of elicitin gene clusters in Phytophthora genomes. Molecular Biology and Evolution, 23: 338–351.
https://doi.org/10.1093/molbev/msj039
Jones J.D.G., Dangl J.L. (2006): The plant immune system. Nature, 444: 323–329.
https://doi.org/10.1038/nature05286
Kamoun S., Young M., Glasscock C., Tyler B.M. (1993): Extracellular protein elicitors from Phytophthora: Host-specificity and induction of resistance to bacterial and fungal phytopathogens. Molecular Plant-Microbe Interactions, 6: 15–25.
https://doi.org/10.1094/MPMI-6-015
Kamoun S., van West P., de Jong A.J., de Groot K.E., Vleeshouwers V.G.A.A., Govers, F. (1997): A gene encoding a protein elicitor of Phytophthora infestans is down-regulated during infection of potato. Molecular Plant-Microbe Interactions, 10: 13–20.
https://doi.org/10.1094/MPMI.1997.10.1.13
Kawamura Y., Hase S., Takenaka S., Kanayama Y., Yoshioka H., Kamoun S., Takahashi H. (2009): INF1 elicitin activates jasmonic acid- and ethylene-mediated signalling pathways and induces resistance to bacterial wilt disease in tomato. Journal of Phytopathology, 157: 287–297.
https://doi.org/10.1111/j.1439-0434.2008.01489.x
Keller H., Bonnet P., Galiana E., Pruvot L., Friedrich L., Ryals J., Ricci P. (1996): Salicylic acid mediates elicitin-induced systemic acquired resistance, but not necrosis in tobacco. Molecular Plant-Microbe Interactions, 9: 696–703.
https://doi.org/10.1094/MPMI-9-0696
Kulik A., Noirot E., Grandperret V., Bourque S., Fromentin J., Salloignon P., Truntzer C., Dobrowolska G., Simon-Plas F., Wendehenne D. (2015): Interplays between nitric oxide and reactive oxygen species in cryptogein signalling. Plant, Cell and Environment, 38: 331–348.
https://doi.org/10.1111/pce.12295
Lecourieux-Ouaked F., Pugin A., Lebrun-Garcia A. (2000): Phosphoproteins involved in the signal transduction of cryptogein, an elicitor of defense reactions in tobacco. Molecular Plant-Microbe Interactions, 13: 821–829.
https://doi.org/10.1094/MPMI.2000.13.8.821
Mikeš V., Milat M-L., Ponchet M., Ricci P., Blein J-P. (1997) The fungal elicitor cryptogein is a sterol carrier protein. FEBS Letters, 416: 190–192
https://doi.org/10.1016/S0014-5793(97)01193-9
Noirot E., Der C., Lherminier J., Robert F., Moricová P., Kiêu K., Leborgne-Castel N., Simon-Plas F., Bouhidel K. (2014): Dynamic changes in the subcellular distribution of the tobacco ROS-producing enzyme RBOHD in response to the oomycete elicitor cryptogein. Journal of Experimental Botany, 65: 5011–5022.
https://doi.org/10.1093/jxb/eru265
O’Donohue M.J., Gousseau H., Huet J.C., Tepfer D., Pernollet J.C. (1995): Chemical synthesis, expression and mutagenesis of a gene encoding β-cryptogein, an elicitin produced by Phytophthora cryptogea. Plant Molecular Biology, 27: 577–586.
https://doi.org/10.1007/BF00019323
Osman H., Vauthrin S., Mikeš V., Milat M.L., Panabières F., Marais A., Brunie S., Maume B., Ponchet M., Blein J.P. (2001): Mediation of elicitin activity on tobacco is assumed by elicitin-sterol complexes. Molecular Biology of the Cell, 12: 2825–2834.
https://doi.org/10.1091/mbc.12.9.2825
Ouyang Z., Li X., Huang L., Hong Y., Zhang Y., Zhang H., Li D., Song F. (2015): Elicitin-like proteins Oli-D1 and Oli-D2 from Pythium oligandrum trigger hypersensitive response in Nicotiana benthamiana and induce resistance against Botrytis cinerea in tomato. Molecular Plant Pathology, 16: 238–250.
https://doi.org/10.1111/mpp.12176
Panabières F., Birch P.R.J., Unkles S.E., Ponchet M., Lacourt I., Venard P., Keller H., Allasia V., Ricci P., Duncan J.M. (1997): Heterologous expression of a basic elicitin from Phytophthora cryptogea in Phytophthora infestans increases its ability to cause leaf necrosis in tobacco. Microbiology, 144: 3343–3349.
https://doi.org/10.1099/00221287-144-12-3343
Peng K., Wang C., Wu C., Huang C., Liou R.-F. (2015): Tomato SOBIR1/EVR homologs are involved in elicitin perception and plant defense against the oomycete pathogen Phytophthora parasitica. Molecular Plant Microbe Interactions, 28: 913–926.
https://doi.org/10.1094/MPMI-12-14-0405-R
Picard K., Ponchet M., Blein J.-P.P., Rey P., Tirilly Y., Benhamou N. (2000). Oligandrin. A proteinaceous molecule produced by the mycoparasite Pythium oligandrum induces resistance to Phytophthora parasitica infection in tomato plants. Plant Physiology, 124: 379–395.
Plešková V., Kašparovský T., Obořil M., Ptáčková N., Chaloupková R., Ladislav D., Damborský J., Lochman J. (2011): Elicitin-membrane interaction is driven by a positive charge on the protein surface: Role of Lys13 residue in lipids loading and resistance induction. Plant Physiology and Biochemistry, 49: 321–328.
https://doi.org/10.1016/j.plaphy.2011.01.008
Ponchet M., Panabières F., Milat M.L., Mikeš V., Montillet J.L., Suty L., Triantaphylides C., Tirilly Y., Blein J.P. (1999): Are elicitins cryptograms in plant-oomycete communications? Cellular and Molecular Life Sciences, 56: 1020–1047.
https://doi.org/10.1007/s000180050491
Pugin A., Frachisse J.M., Tavernier E., Bligny R., Gout E., Douce R., Guern J. (1997): Early events induced by the elicitor cryptogein in tobacco cells: Involvement of a plasma membrane NADPH oxidase and activation of glycolysis and the pentose phosphate pathway. The Plant Cell, 9: 2077–2091.
https://doi.org/10.2307/3870566
Ricci P., Bonnet P., Huet J.-C., Sallantin M., Beuvais-Cante F., Bruneteau M., Billard V., Michel G., Pernollet J.-C. (1989): Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. European Journal of Biochemistry, 183: 555–563.
https://doi.org/10.1111/j.1432-1033.1989.tb21084.x
Sandor R., Der C., Grosjean K., Anca I., Noirot E., Leborgne-Castel N., Lochman J., Simon-Plas F., Gerbeau-Pissot P. (2016): Plasma membrane order and fluidity are diversely triggered by elicitors of plant defence. Journal of Experimental Botany, 67: 5173–5185.
https://doi.org/10.1093/jxb/erw284
Satková P., Starý T., Plešková V., Zapletalová M., Kašparovský T., Činčalová-Kubienová L., Luhová L., Mieslerová B., Mikulík J., Lochman, J., Petřivalský M. (2017): Diverse responses of wild and cultivated tomato to BABA, oligandrin and Oidium neolycopersici infection. Annals of Botany, 119: 829–840.
Stanislas T., Bouyssie D., Rossignol M., Vesa S., Fromentin J., Morel J., Pichereaux C., Monsarrat B., Simon-Plas F. (2009): Quantitative proteomics reveals a dynamic association of proteins to detergent-resistant membranes upon elicitor signaling in tobacco. Molecular & Cellular Proteomics, 8: 2186–2198.
Starý T., Satková P., Piterková J., Mieslerová B., Luhová L., Mikulík J., Kašparovský T., Petřivalský M., Lochman J. (2018): The elicitin β-cryptogein’s activity in tomato is mediated by jasmonic acid and ethylene signalling pathways independently of elicitin–sterol interactions. Planta, 249: 739–749.
https://doi.org/10.1007/s00425-018-3036-1
Takenaka S., Nakamura Y., Kono T., Sekiguchi H., Masunaka A., Takahashi H. (2006): Novel elicitin-like proteins isolated from the cell wall of the biocontrol agent Pythium oligandrum induce defence-related genes in sugar beet. Molecular Plant Pathology, 7: 325–339.
https://doi.org/10.1111/j.1364-3703.2006.00340.x
Uhlíková H., Obořil M., Klempová J., Šedo O., Zdráhal Z., Kašparovský T., Skládal P., Lochman J. (2016): Elicitin-induced distal systemic resistance in plants is mediated through the protein-protein interactions influenced by selected lysine residues. Frontiers in Plant Science, 7: 59.
https://doi.org/10.3389/fpls.2016.00059
Vleeshouwers V.G.A.A., Driesprong J.D., Kamphuis L.G., Torto-Alalibo T., Van’T Slot K.A.E., Govers F., Visser R.G.F., Jacobsen E., Kamoun S. (2006): Agroinfection-based high-throughput screening reveals specific recognition of INF elicitins in Solanum. Molecular Plant Pathology, 7: 499–510.
https://doi.org/10.1111/j.1364-3703.2006.00355.x
Wendehenne D., Lamotte O., Frachisse J.M., Barbier-Brygoo H., Pugin A. (2002): Nitrate efflux is an essential component of the cryptogein signaling pathway leading to defense responses and hypersensitive cell death in tobacco. Plant Cell, 14: 1937–1951.
https://doi.org/10.1105/tpc.002295
Xu J., Yang K.Y., Yoo S.J., Liu Y., Ren D., Zhang S. (2014): Reactive oxygen species in signalling the transcriptional activation of WIPK expression in tobacco. Plant, Cell and Environment, 37: 1614–1625.
https://doi.org/10.1111/pce.12271
Yamamoto-Katou A., Katou S., Yoshioka H., Doke N., Kawakita K. (2006): Nitrate reductase is responsible for elicitin-induced nitric oxide production in Nicotiana benthamiana. Plant and Cell Physiology, 47: 726–735.
https://doi.org/10.1093/pcp/pcj044
Yu L.M. (1995): Elicitins from Phytophthora and basic resistance in tobacco. Proceedings of the National Academy of Sciences USA, 92: 4088–4094.
https://doi.org/10.1073/pnas.92.10.4088
Yun B-W., Feechan A., Yin M., Saidi N.B.B., Le Bihan T., Yu M., Moore J.W., Kang J-G., Kwon E., Spoel S.H. (2011): S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature, 478: 264–268.
https://doi.org/10.1038/nature10427