Population parameters of the tomato leaf miner Tuta absoluta (Lepidoptera: Gelechiidae) on wild tomato species


Aslan B., Birgücü A.K. (2022): Population parameters of the tomato leaf miner Tuta absoluta (Lepidoptera: Gelechiidae) on wild tomato species. Plant Protect. Sci., 58: 315–325.

download PDF

In this study, the effects of five wild tomato species (Solanum chilense, Solanum corneliomulleri, Solanum neorickii, Solanum huaylesense and Solanum pennellii) on the life table parameters of Tuta absoluta were determined for the first time, and the larval development time, lifespan, pupal period, fecundity, and female/male longevity were also estimated. According to the data obtained from the study, S. chilense was determined as the most suitable species for the development of T. absoluta. Among the wild tomato species, S. corneliomulleri and S. neorickii were determined as the most effective hosts against T. absoluta in terms of the intrinsic rate of increase, net reproductive rate, mean generation time, gross reproduction rate, population doubling time, and finite rate of increase than the other species. These two species were also effective against the pest on the egg, larval development, total longevity, and fecundity. According to these results, S. corneliomulleri and S. neorickii are viable candidates for the development of new resistant tomato genotypes to T. absoluta.

Baier J.E., Resende J.T.V., Faria M.V., Schwarz K., Meert L. (2015): Indirect selection of industrial tomato genotypes that are resistant to spider mites (Tetranychus urticae). Genetics and Molecular Research, 14: 244–252. https://doi.org/10.4238/2015.January.16.8
Biondi A., Guedes R.N.C., Wan F.H., Desneux N. (2018): Ecology, worldwide spread, and management of the invasive South American Tomato Pinworm, Tuta absoluta: past, present, and future. Annuals Review of Entomology, 63: 239–258. https://doi.org/10.1146/annurev-ento-031616-034933
Biondi A., Desneux N. (2019): Special issue on Tuta absoluta: Recent advances in management methods against the background of an ongoing worldwide invasion. Journal of Pest Science, 92: 1313–1315.  https://doi.org/10.1007/s10340-019-01132-6
Birch L.C. (1948): The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology, 17: 15–26. https://doi.org/10.2307/1605
Bitew M.K. (2018): Significant role of wild genotypes of tomato trichomes for Tuta absoluta resistance. Journal of Plant Genetics and Breeding, 2: 1–13.
Çekin D., Yaşar B. (2015): The life table of Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) on different tomato varieties. Journal of Agricultural Science, 21: 199–206.
Desneux N., Han P., Mansour R., Arnó J., Brévault T., Campos M.R., Chailleux A., Guedes R.N., Karimi J., Konan K.A., Lavoir A.V. (2021): Integrated pest management of Tuta absoluta: Practical implementations across different regions around the world. Journal of Pest Science, 95: 17–39. https://doi.org/10.1007/s10340-021-01442-8
Dodsworth S., Chase M.W., Särkinen T., Knapp S., Leıtch A.R. (2016): Using genomic repeats for phylogenomics: A case study in wild tomatoes (Solanum section Lycopersicon: Solanaceae). Biological Journal of the Linnean Society, 117: 96–105. https://doi.org/10.1111/bij.12612
Duarte L., Martinez M.A., Bueno V.H.P. (2015): Biology and population parameters of Tuta absoluta (Meyrick) under laboratory conditions. Revista Protección Vegetal, 30: 19–29.
Fernandez S., Montagne A. (1990): Biologica del minador del tomate, Scrobipalpula absoluta (Meyrick). Bollettin Entomologia Venezuela, 5: 89–99.
Gharekhani G.H., Salek-Ebrahimi H. (2014): Life table parameters of Tuta absoluta (Lepidoptera: Gelechiidae) on different varieties of tomato. Journal of Economic Entomology, 107: 1765–1770. https://doi.org/10.1603/EC14059
Goncalves Neto A.C., Silva V.F., Maluf W.R., Maciel G.M., Nizio D.A.C., Gomes L.A.A. (2010): Resistance to the South American tomato pinworm in tomato plants with high foliar acylsugar contents. Horticultura Brasileira, 28: 203–208.
Hajjar R., Hodgkin T. (2007): The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica, 156: 1–3. https://doi.org/10.1007/s10681-007-9363-0
Huang Y.B., Chi H. (2012): Assessing the application of the jackknife and bootstrap techniques to the estimation of the variability of the net reproductive rate and gross reproductive rate: A case study in Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Journal of Agriculture & Forestry, 61: 37–45.
Chi H. (1988): Life table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17: 26–34. https://doi.org/10.1093/ee/17.1.26
Chi H., Liu H. (1985): Two new methods for the study of insect population ecology. Bulletin of Institute of Zoology, Academia Sinica, 24: 225–240.
Cho K., Kwon S., Cho M., Im J.S., Park Y.E., Hong S.Y., Hwang I.T., Kang J.H. (2017): Characterization of trichome morphology and aphid resistance in cultivated and wild species of potato. Horticulture Environmental Biotechnology, 58: 450–457. https://doi.org/10.1007/s13580-017-0078-4
Kairo M.T.K., Murphy S.T. (1995): The life history of Rodolia iceryae Janson (Col., Coccinellidae) and the potential for use in innoculative releases against Icerya pattersoni Newstead (Hom., Margarodidae) on coffee. Journal of Applied Entomology, 119: 487–491.  https://doi.org/10.1111/j.1439-0418.1995.tb01322.x
Kayahan A., Şimşek B., Karaca İ., Aktaş H. (2018): Determination of the responses of different tomato species to Tuta absoluta. Scientific Papers: Series B Horticulture, 62: 431–435.
Lawo J.P., Lawo N.C. (2011): Misconceptions about the comparison of intrinsic rates of natural increase. Journal of Applied Entomology, 135: 715–725. https://doi.org/10.1111/j.1439-0418.2011.01608.x
Leckie B.M., De Jong D.M., Mutschler M.A. (2012): Quantitative trait loci increasing acylsugars in tomato breeding lines and their impacts on silver leaf whiteflies. Molecular Breeding, 30: 1621–1634. https://doi.org/10.1007/s11032-012-9746-3
Lewis E.G. (1942): On the generation and growth of a population. Sankhya, 6: 93–96.
Maluf W.R., Silva V.F., Cardoso M.G., Gomes L.A.A., Gonçalves Neto A.C., Maciel G.M., Nízio D.A.C. (2010a): Resistance to the South American tomato pinworm Tuta absoluta in high acylsugar and/or high zingiberene tomato genotypes. Euphytica, 176: 113–123.  https://doi.org/10.1007/s10681-010-0234-8
Maluf W.R., Maciel G.M., Gomes L.A.A., Cardoso M.G., Goncalvesc L.D., Silva E.C. (2010b): Broad-spectrum arthropod resistance in hybrids between high- and low-acylsugar tomato lines. Crop Science, 50: 439–450. https://doi.org/10.2135/cropsci2009.01.0045
Mata-Nicolás E., Montero-Pau J., Gimeno-Paez E., García-Pérez A., Ziarsolo P., Blanca J., Van der Knaap E., Díez M.J., Cañizares J. (2021): Discovery of a major QTL controlling trichome IV density in tomato using K-seq genotyping. Genes, 12: 243. doi: 10.3390/genes12020243 https://doi.org/10.3390/genes12020243
Maxted N., Magos Brehm J., Kell S. (2013): Resource book for preparation of national conservation plans for crop wild relatives and landraces. Rome, Food and Agriculture Organization of the United Nations Commission on Genetic Resources for Food and Agriculture.
Pereyra P.C., Sánchez N.E. (2006): Effect of two solanaceous plants on developmental and population parameters of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotropical Entomology, 35: 671–676.  https://doi.org/10.1590/S1519-566X2006000500016
Picanço M.C., Bacci L., Crespo A.L.B., Miranda M.M.M., Martins J.C. (2007): Effect of integrated pest management practices on tomato production and conservation of natural enemies. Agricultural and Forest Entomology, 9: 327–335. https://doi.org/10.1111/j.1461-9563.2007.00346.x
Pinder J.E., Wiener J.G., Smith M.H. (1978): The Weibull distribution: A new method of sumarizing survivorship data. Ecology, 59: 175–179.  https://doi.org/10.2307/1936645
Rostami E., Madadi H., Abbasipour H., Allahyari H., Cutbertson A.G.S. (2016): Life table parameters of the tomato leaf miner Tuta absoluta (Lepidoptera: Gelechiidae) on different tomato cultivars. Journal of Applied Entomology, 141: 88–96.  https://doi.org/10.1111/jen.12319
Santana P.A., Kumar L., Da Silva R.S., Picanço M.C. (2019): Global geographic distribution of Tuta absoluta as affected by climate change. Journal of Pest Science, 92: 1373–1385. https://doi.org/10.1007/s10340-018-1057-y
Simmons A.M., Wakil W., Qayyum M.A., Ramasamy S., Kuhar T.P., Philips C.R. (2018): Lepidopterous pests: Biology, ecology, and management. In: Wakil W., Brust G.E., Perring T.M. (eds). Sustainable Management of Arthropod Pests of Tomato. Cambridge, Elsevier: 131–162.
Sohrabi F., Nooryazdan H., Gharati B., Saeidi Z. (2016): Evaluation of ten tomato cultivars for resistance against tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) under field infestation conditions. Entomologia Generalis, 36: 163–175.  https://doi.org/10.1127/entomologia/2016/0350
Sridhar V., Sadashiva A.T., Rao V.K., Swathi P., Gadad H.S. (2019a): Trichome and biochemical basis of resistance against Tuta absoluta in tomato genotypes. Plant Genetic Resources, 17: 301–305.  https://doi.org/10.1017/S147926211800062X
Sridhar V., Naik S.O., Nitin K.S., Asokan R., Swathi P., Gadad H. (2019b): Efficacy of integrated pest management tools evaluated against Tuta absoluta (Meyrick) on tomato in India. Biological Control, 33: 264–270. https://doi.org/10.18311/jbc/2019/23254
Stam R., Scheikl D., Tellier A. (2017): The wild tomato species Solanum chilense shows variation in pathogen resistance between geographically distinct populations. PeerJ, 5: e2910. doi: 10.7717/peerj.2910 https://doi.org/10.7717/peerj.2910
Tanksley S.D., McCouch S.R. (1997): Seed banks and molecular maps: Unlocking genetic potential from the wild. Science, 277: 1063–1066. https://doi.org/10.1126/science.277.5329.1063
Tingle C.C.D., Copland M.J.W. (1989): Progeny production and adult longevity of the mealybug parasitoids Anagyrus pseudococci, Leptomastix dactylopii and Leptomastidea abnormis (Hymenoptera: Encyrtidae) in relation to temperature. Entomophaga, 34: 111–120. https://doi.org/10.1007/BF02372594
Torres J.B., Faria C.A., Evangelista W.S., Pratissoli D. (2001): Within plant distribution of leaf miner Tuta absoluta (Meyrick) immatures in processing tomatoes, with notes on plant phenology. International Journal of Pest Management, 47: 173–178.  https://doi.org/10.1080/02670870010011091
Tukey J.W. (1949): Comparing individual means in the analyses of variance. Biometrics, 5: 99–114.  https://doi.org/10.2307/3001913
Van Deventer P. (2009): Leafminer threatens tomato growing in Europe. Fruit & Vegetable Tech, 9: 10–12.
Vitta N., Estay P., Chorbadjian R.A. (2016): Characterization of resistance expression in genotypes of Solanum Section Lycopersicon against Tuta absoluta (Lepidoptera: Gelechiidae). Ciencia e Investigación Agraria, 43: 366–373. https://doi.org/10.4067/S0718-16202016000300003
Wang J.J., Tsai J.H., Zhao Z.M., Li L.S. (2000): Development and reproduction of the psocid Liposcelis bostrychophila (Psocoptera: Liposcelididae) as a function of temperature. Annals of the Entomological Society of America, 93: 261–270.  https://doi.org/10.1603/0013-8746(2000)093[0261:DAROTP]2.0.CO;2
Yu J.Z., Chi H., Chen B.H. (2013a): Comparison of the life tables and predation rates of Harmonia dimidiata (F.) (Coleoptera: Coccinellidae) fed on Aphis gossypii Glover (Hemiptera: Aphididae) at different temperatures. Biological Control, 64: 1–9.  https://doi.org/10.1016/j.biocontrol.2012.10.002
Yu L.Y., Chen Z.Z., Zheng F.Q., Shi A.J., Guo T.T., Yeh B.H., Chi H., Xu Y.Y. (2013b): Demographic analysis, a comparison of the jackknife and bootstrap methods, and predation projection: A case study of Chrysopa pallens (Neuroptera: Chrysopidae). Journal of Economical Entomology, 106: 1–9.  https://doi.org/10.1603/EC12200
Zeist A.R., da Silva A.A., de Resende J.T.V., Maluf W.R., Gabriel A., Zanin D.S., Guerra E.P. (2018): Tomato breeding for insect-pest resistance. In: Nyaku S.T., Danquash A. (eds). Recent Advances in Tomato Breeding and Production. London, IntechOpen: 1–20.
Zhang H., Li C., Davis E.L., Wang J., Griffin J.D., Kofsky J., Song B. (2016): Genome-wide association study of resistance to soybean cyst nematode (Heterodera glycines) HG Type 2.5.7 in wild soybean (Glycine soja). Frontiers in Plant Science, 7: 1214. doi: 10.3389/fpls.2016.01214 https://doi.org/10.3389/fpls.2016.01214
Zhang Y., Song H., Wang X., Zhou X., Zhang K., Chen X., Liu J., Han J., Wang A. (2019): The roles of different types of trichomes in tomato resistance to cold, drought, whiteflies, and Botrytis. Agronomy, 10: 411. doi: 10.3390/agronomy10030411 https://doi.org/10.3390/agronomy10030411
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti