Entomopathogenic nematodes: can we use the current knowledge on belowground multitrophic interactions in future plant protection programmes? – Review

https://doi.org/10.17221/24/2019-PPSCitation:Jagodič A., Trdan S., Laznik Ž. (2019): Entomopathogenic nematodes: can we use the current knowledge on belowground multitrophic interactions in future plant protection programmes? – Review. Plant Protect. Sci., 55: 243-254.
download PDF

Plants under herbivore attack emit mixtures of volatiles that can attract the natural enemies of the herbivores. Entomopathogenic nematodes (EPNs) are organisms that can be used in the biological control of insect pests. Recent studies have shown that the movement of EPNs is associated with the detection of chemical stimuli from the environment. To date, several compounds that are responsible for the mediation in below ground multitrophic interactions have been identified. In the review, we discuss the use of EPNs in agriculture, the role of belowground volatiles and their use in plant protection programmes.

References:
Akhurst R., Smith K. (2002): Regulation and safety. In: Gaugler R. (ed.): Entomopathogenic Nematology. Wallingford, CABI Publishing: 311–332.
 
Ali J.G., Alborn H.T., Stelinski L.L. (2010): Subterranean herbivore-induced volatiles released by citrus roots upon feeding by Diaprepes abbreviatus recruit entomopathogenic nematodes. Journal of Chemical Ecology, 36: 361–368. https://doi.org/10.1007/s10886-010-9773-7
 
Ali J.G., Alborn H.T., Stelinski L.L. (2011): Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. Journal of Ecology, 99: 26–35. https://doi.org/10.1111/j.1365-2745.2010.01758.x
 
Alleyne M., Beckage N.E. (1997): Parasitism-induced effects on host growth and metabolic efficiency in tobacco hornworm larvae parasitised by Cotesia congregata. Journal of Insect Physiology, 43: 407–424. https://doi.org/10.1016/S0022-1910(96)00086-8
 
Bais H.P., Weir T.L., Perry L.G., Gilroy S., Vivanco J.M. (2006): The role of root exudates in rhizosphere interations with plants and other organisms. Annual Review of Plant Biology, 57: 233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159
 
Benrey B., Callejas A., Rios L., Oyama K., Denno R.F. (1998): The effects of domestification of Brassica and Phaseolus on the interaction between phytophagus insects and parasitiods. Biological Control, 11: 130–140. https://doi.org/10.1006/bcon.1997.0590
 
Boemare N.E., Laumond C., Luciani J. (1982): Mise en évidence d’une toxicogénèse provoquée par le nématode axénique entomophage Neoplectana carpocapsae, Weiser chez l’insecte Galleria mellonella L. Comptes rendus des séances de l’Academie des Sciences, 295: 543–546.
 
Boff M.I.C., Zoon F.C., Smits P.H. (2001): Orientation of Heterorhabditis megidis to insect hosts and plant roots in a Y-tube sand olfactometer. Entomologia Experimentalis et Applicata, 98: 329–337. https://doi.org/10.1046/j.1570-7458.2001.00789.x
 
Braasch J., Kaplan I. (2012): Over what distance are plant volatiles bioactive? Estimating the spatial dimensions of attraction in an arthropod assemblage. Entomologia Experimentalis et Applicata, 145: 115–123. https://doi.org/10.1111/j.1570-7458.2012.01317.x
 
Brillada C., Nishihara M., Shimoda T., Garms S., Boland W., Maffei M.E., Arimura G.I. (2013): Metabolic engineering of the C16 homoterpene TMTT in Lotus japonicus through overexpression of (E,E)-geranyllinalool synthase attracts generalist and specialist predators in different manners. New Phytologist Trust, 200: 1200–1211. https://doi.org/10.1111/nph.12442
 
Burman M., Pye A. (1980): Neoaplectana carpocapsae: movement of nematode populations on thermal gradient. Experimental Parasitology, 49: 258–265. https://doi.org/10.1016/0014-4894(80)90122-8
 
Campbell J.F., Lewis E.E., Stock S.P., Nadler S., Kaya H.K. (2003): Evolution of host search strategies in entomopathogenic nematodes. Journal of Nematology, 35: 142–145.
 
Cheng A.X., Xiang C.Y., Li J.X., Yang C.Q., Hu W.L., Wang L.J., Lou Y.G., Chen X.Y. (2007): The rice (E)-β-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. Phytochemistry, 68: 1632–1641. https://doi.org/10.1016/j.phytochem.2007.04.008
 
Crespo E., Hordijk C.A., de Graff R.M., Samudrala D., Cristescu S.M., Harren F.J.M., van Dam N.M., (2012): On-line detection of root-induced volatiles in Brassica nigra plants infested with Delia radicum L. root fly larvae. Phytochemistry, 84: 68–77. https://doi.org/10.1016/j.phytochem.2012.08.013
 
Crocoll C., Asbach J., Novak J., Gershenzon J., Degenhardt J. (2010): Terpene synthases of oregano (Origanum vulgare L.) and their roles in the pathway and regulation of terpene biosynthesis. Plant Molecular Biology, 73: 587–603. https://doi.org/10.1007/s11103-010-9636-1
 
Cruz-Martínez H., Ruiz-Vega J., Matadamas-Ortíz P.T., Cortés-Martínez C.I., Rosas-Diaz, J. (2017): Formulation of entomopathogenic nematodes for crop pest control – a review. Plant Protection Science, 53: 15–24. https://doi.org/10.17221/35/2016-PPS
 
Degenhardt J. (2009): Indirect defense responses to herbivory in grasses. Plant Physiology, 149: 96–102. https://doi.org/10.1104/pp.108.128975
 
Degenhardt J., Gershenzon J., Baldwin I.T., Kessler A. (2003): Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Current Opinion in Biotechnology, 14: 169–176. https://doi.org/10.1016/S0958-1669(03)00025-9
 
De Nardo E.A.B., Grewal P.S. (2003): Compatibility of Steinernema feltiae (Nematoda: Steinernematidae) with pesticides and plant growth regulators used in glasshouse plant production. Biocontrol Science & Technology, 13: 441–448.
 
Dicke M. (1999): Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods? Entomologia Experimentalis et Applicate, 91: 131–142. https://doi.org/10.1046/j.1570-7458.1999.00475.x
 
Dudareva N., Negre F., Nagegowda D.A., Orlova I. (2006): Plant volatiles: Recent advances and future perspectievs. Critical Reviews in Plant Sciences, 25: 417–440. https://doi.org/10.1080/07352680600899973
 
Ehlers R.U. (1998): Entomopathogenic nematodes – save biocontrol agents for sustainable systems. Phytoprotection, 79: 94–102. https://doi.org/10.7202/706164ar
 
Ehlers R.U. (2001): Mass production of entomopathogenic nematodes for plant protection. Applied Microbiology and Biotechnology, 56: 523–633. https://doi.org/10.1007/s002530100711
 
Flores H.E., Vivanco J.M., Loyola-Vargas V.M. (1999): ‘Radicle’ biochemistry: The biology of root-specific metabolism. Trends in Plant Science, 4: 220–226. https://doi.org/10.1016/S1360-1385(99)01411-9
 
Fontana A., Held M., Fantaye C.A., Turlings T.C.J., Degenhardt J., Gershenzon J. (2011): Attractiveness of constitutive and herbivore-induced sesquiterpene blends of maize to the parasitic wasp Cotesia marginiventris (Cresson). Journal of Chemical Ecology, 37: 582–591. https://doi.org/10.1007/s10886-011-9967-7
 
Gaugler R., Campbell J.F. (1991): Selection for enhanced host-finding of scarab larvae (Coleoptera, Scarabaeidae) in an entomopathogenic nematode. Environmental Entomology, 20: 700–706. https://doi.org/10.1093/ee/20.2.700
 
Gaugler R., Bednarek A., Campbell J.F. (1992): Ultraviolet inactivation of heterorhabditids and steinernematids. Journal of Invertebrate Pathology, 59: 155–160. https://doi.org/10.1016/0022-2011(92)90026-Z
 
Gaugler R., Campbell J.F., McGuire T.R. (1989): Selection for host-finding in Steinernema feltiae. Journal of Invertebrate Pathology, 54: 363–372. https://doi.org/10.1016/0022-2011(89)90120-1
 
Georgis R., Koppenhöfer A.M., Lacey L.A., Bélair G., Duncan L.W., Grewal P.S., Samish M., Tan L., Torr P., van Tol R.W.H.M. (2006): Successes and failures in the use of parasitic nematodes for pest control. Biological Control, 38: 103–123. https://doi.org/10.1016/j.biocontrol.2005.11.005
 
Glaser R.W., Farrell C.C. (1935): Field experiments with the Japanese beetle and its nematode parasite. Journal of New York Entomological Society, 43: 345–371.
 
Glazer I., Klein M., Navon A., Nakache Y. (1992): Comparison of efficacy of entomopathogenic nematodes combined with antidesiccants applied by canopy sprays against three cotton pests (Lepidoptera: Noctuidae). Journal of Economic Entomology, 85: 1636–1641. https://doi.org/10.1093/jee/85.5.1636
 
Gosset V., Harmel N., Göbel C., Francis F., Haubruge E., Wathelet J.P., du Jardin P., Feussner I., Fauconnier M.L. (2009): Attacks by piercing-sucking insect (Myzus persicae Sultzer) or a chewing insect (Leptinotarsa decemlineata Say) on potato plants (Solanum tuberosum L.) induce differential changes in volatile compound release and oxylipin synthesis. Journal of Experimental Botany, 60: 1231–1240. https://doi.org/10.1093/jxb/erp015
 
Gouinguene S., Degen T., Turlings T.J.C. (2001): Variability in herbivore-induced odour emissions among maize cultivars and their wild ancestors (teosinte). Chemoecology, 11: 9–16. https://doi.org/10.1007/PL00001832
 
Grewal P.S. (2002): Formulation and application technology. In: Gaugler R. (ed.): Entomopathogenic Nematology. Wallingford, CABI Publishing: 311–332.
 
Grewal P.S., Gaugler R., Lewis E.E. (1993): Host recognition behaviour by entomopathogenic nematodes during contact within insect gut contents. Journal of Parasitology, 79: 495–503. https://doi.org/10.2307/3283373
 
Grewal P.S., Selvan S., Gaugler R. (1994): Thermal adaptation of entomopathogenic nematodes: niche breadth for infection, establishment, and reproduction. Journal of Thermal Biology, 19: 245–253. https://doi.org/10.1016/0306-4565(94)90047-7
 
Griffin C.T., Downes M.J. (1994): Selection of Heterorhabditis sp. for improved infectivity at low temperatures. In: Burnell A.M., Ehlers R.U., Masson J.P. (eds): Genetics of Entomopathogenic Nematode-bacterium Complexes. Luxembourg, Office for Official Publications of the European Communities: 120–128.
 
Hallem E.A., Dillman A.R., Hong A.V., Zhang Y.J., Yano J.M., DeMarco S.F., Sternberg P.W. (2011): A sensory code for host seeking in parasitic nematodes. Current Biology, 21: 377–383. https://doi.org/10.1016/j.cub.2011.01.048
 
Harvey J.A., Sano T., Tanaka T. (2010): Differential host growth regulation by the solitary endoparasitoid Meteorus pulchiornis in two hosts of greatly differing mass. Journal of Insect Physiology, 56: 1178–1183. https://doi.org/10.1016/j.jinsphys.2010.03.018
 
Hassanali A., Herren H., Khan Z.R., Pickett J.A., Woodcock C.M. (2008): Integrated pest management: The push-pull approach for controlling insect pest and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Philosophical Transactions of the Royal Society, 363: 611–621. https://doi.org/10.1098/rstb.2007.2173
 
Hazir S., Kaya H.K., Stock S.P., Keskin N. (2004): Entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) for biological control of soil pests. Turkish Journal of Biology, 27: 181–202.
 
Head J., Lawrence A.J., Walters K.F.A. (2004): Efficacy of the entomopathogenic nematode, Steinernema feltiae, against Bemisia tabaci in relation to plant species. Journal of Applied Entomology, 128: 543–547. https://doi.org/10.1111/j.1439-0418.2004.00882.x
 
Head J., Walters K.F.A., Langton S. (2000): The compatibility of the entomopathogenic nematode, Steinernema feltiae, and chemical insecticides for the control of the South American leafminer, Liriomyza huidobrensis. Biocontrol, 45: 345–353. https://doi.org/10.1023/A:1009986217310
 
Heil M. (2008): “Indirect defence via tritrophic interactions”. New Phytologist, 178: 41–61. https://doi.org/10.1111/j.1469-8137.2007.02330.x
 
Hiltpold I., Turlings T.C.J. (2008): Belowground chemical signaling in maize: when simplicity rhymes with efficiency. Journal of Chemical Ecology, 34: 628–635. https://doi.org/10.1007/s10886-008-9467-6
 
Hiltpold I., Erb M., Robert C.A.M., Turlings T.C.J. (2011): Systemic root signalling in a belowground, volatile-mediated tritrophic interaction. Plant Cell and Environment, 34: 1267–1275. https://doi.org/10.1111/j.1365-3040.2011.02327.x
 
Hiltpold I., Toepfer S., Kuhlmann U., Turlings T.C.J. (2010c): How maize root volatiles influence the efficacy of entomopathogenic nematodes against the western corn rootworm? Chemoecology, 20: 155–162. https://doi.org/10.1007/s00049-009-0034-6
 
Hiltpold I., Baroni M., Toepfer S., Kuhlmann U., Turlings T.C.J. (2010a): Selection of entomopathogenic nematodes for enhanced responsiveness to a volatile root signal helps to control a major root pest. Journal of Experimental Biology, 213: 2417–2423. https://doi.org/10.1242/jeb.041301
 
Hiltpold I., Baroni M., Toepfer S., Kuhlmann U., Turlings T.C.J. (2010b): Selective breeding of entomopathogenic nematodes for enhanced attraction to a root signal did not reduce their establishment or persistence after field release. Plant Signalling and Behaviour, 5: 1450–1452. https://doi.org/10.4161/psb.5.11.13363
 
Hiltpold I., Bernklau E., Bjostad L.B., Alvarez N., Miller-Struttmann N.E., Lundgren J.G., Hibbard B.E. (2013): Nature, evolution and characterisation of rhizospheric chemical exudates affecting root herbivores. In: Johnson S.N., Hiltpold I., Turlings T. (eds): Behaviour and Physiology of Root Herbivores. New York, Academic Press: 97–157.
 
Ishibashi N., Choi D.R. (1991): Biological control of soil pests by mixed application of entomopathogenic and fungivorous nematodes. Journal of Nematology, 23: 175–181.
 
Jagodič A., Ipavec N., Trdan S., Laznik Ž. (2017): Attraction behaviours: are synthetic volatiles, typically emitted by insect-damaged Brassica nigra roots, navigation signals for entomopathogenic nematodes (Steinernema and Heterorhabditis)? BioControl, 62: 515–524. https://doi.org/10.1007/s10526-017-9796-x
 
Kaplan I. (2012): Attracting carnivorous arthropods with plant volatiles: The future of biocontrol or playing with fire? Biological Control, 60: 77–89. https://doi.org/10.1016/j.biocontrol.2011.10.017
 
Kappers I.F., Ahroni A., van Herpen T.W., Luckerhoff L.L., Dicke M., Bouwmeester H.J. (2005): Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science, 309: 2070–2072. https://doi.org/10.1126/science.1116232
 
Kessler A., Baldwin I.T. (2002): Plant responses to insect herbivory: The emerging molecular analysis. Annual Review of Plant Biology, 53: 299–328. https://doi.org/10.1146/annurev.arplant.53.100301.135207
 
Khan Z.R., Ampong-Nyarko K., Chiliswa P., Hassanali A., Kimani S., Lwande W., Overholt W.A., Pickett J.A., Smart L.E., Wadhams L.J. (1997): Intercropping increases parasitism of pests. Nature, 388: 631–632. https://doi.org/10.1038/41681
 
Köllner T.G., Held M., Lenk C., Hiltpold I., Turlings T.J.C., Gershenzon J., Degenhardt J. (2008): A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell, 20: 482–494. https://doi.org/10.1105/tpc.107.051672
 
Koppenhöfer A.M., Cowles R.S., Cowles E.A., Fuzy E.M., Baumgartner L. (2002): Comparison of neonicotinoid insecticides as synergists for entomopathogenic nematodes. Biological Control, 24: 90–97. https://doi.org/10.1016/S1049-9644(02)00008-7
 
Krishnayya P.V., Grewal P.S. (2002): Effect of neem and selected fungicides on viability and virulence of the entomopathogenic nematode Steinernema feltiae. Biocontrol Science and Technology, 12: 259–266. https://doi.org/10.1080/09583150210388
 
Laznik Ž., Trdan S. (2011): Entomopathogenic nematodes (Nematoda: Rhabditida) in Slovenia: From tabula rasa to implementation into crop production systems. In: Perveen F.K. (ed.): Insecticides – Pest Engineering. Rijeka, InTechOpen: 627–656.
 
Laznik Ž., Trdan S. (2013): An investigation on the chemotactic responses of different entomopathogenic nematode strains to mechanically damaged root volatile compounds. Experimental Parasitology, 134: 349–355. https://doi.org/10.1016/j.exppara.2013.03.030
 
Laznik Ž., Trdan S. (2014): The influence of insecticides on the viability of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under laboratory conditions. Pest Management Science, 70: 784–789. https://doi.org/10.1002/ps.3614
 
Laznik Ž., Trdan S. (2016a): Attraction behaviors of entomopatogenic nematodes (Steinernematidae and Heterorhabditidae) to synthetic volatiles emitted by insect damaged carrot roots. Journal of Pest Science, 4: 977–984. https://doi.org/10.1007/s10340-015-0720-9
 
Laznik Ž., Trdan S. (2016b): Attraction behaviours of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) to synthetic volatiles emitted by insect damaged potato tubers. Journal of Chemical Ecology, 42: 314–322. https://doi.org/10.1007/s10886-016-0686-y
 
Laznik Ž., Trdan S. (2018): Are synthetic volatiles, typically emitted by insect-damaged peach cultivars, navigation signals for two-spotted lady beetle (Adalia bipunctata L.) and green lacewing (Chrysoperla carnea [Stephens]) larvae? Journal of Plant Diseases and Protection, 125: 529–538. https://doi.org/10.1007/s41348-018-0172-6
 
Laznik Ž., Košir I.J., Rozman L., Kač M., Trdan S. (2011): Preliminary results of variability in mechanical-induced volatile root-emissions of different maize cultivars. Maydica, 56: 343–350.
 
Laznik Ž., Tóth T., Lakatos T., Vidrih M., Trdan S. (2010): Control of the Colorado potato beetle (Leptinotarsa decemlineata [Say]) on potato under field conditions: a comparison of the efficacy of foliar application of two strains of Steinernema feltiae (Filipjev) and spraying with thiametoxam. Journal of Plant Diseases and Protection, 117: 129–135. https://doi.org/10.1007/BF03356348
 
Lello E.R., Patel M.N., Mathews G.A., Wright D.J. (1996): Application technology for entomopathogenic nematodes against foliar pests. Crop Protection, 15: 567–574. https://doi.org/10.1016/0261-2194(96)00026-9
 
Lewis E.E. (2002): Behavioural ecology. In: Gaugler R. (ed.): Entomopathogenic Nematology. Wallingford, CABI Publishing: 205–223.
 
Loughrin J., Manukian A., Heath R., Tumlinson J. (1995): Volatiles emitted by different cotton varieties damaged by feeding beet armyworm larvae. Journal of Chemical Ecology, 21: 1217–1227. https://doi.org/10.1007/BF02228321
 
Majić I., Sarajlić A., Lakatos T., Tóth T., Raspudić E., Puškadija Z., Kanižai Šarić G., Laznik Ž. (2019): Virulence of new strain of Heterorhabditis bacteriophora from Croatia against Lasioptera rubi. Plant Protection Science, 55: 134–141. https://doi.org/10.17221/119/2018-PPS
 
Maron J.L., Kauffman M.J. (2006): Habitat-specific impacts of multiple consumers on plant population dynamics. Ecology, 87: 113–124. https://doi.org/10.1890/05-0434
 
Pickett J.A., Bruce T.J.A., Chamberlain K., Hassanali A., Khan Z.R., Matthes M.C., Napier J.A., Smart L.E., Wadhams L.J., Woodcock C.M. (2006): Plant volatiles yielding new ways to exploit plant defence. In: Dicke M., Takken W. (eds): Chemical Ecology: From Gene to Ecosystem. Dordrecht, Springer: 161–173.
 
Poinar G.O., Grewal P.S. (2012): History of entomopathogenic nematology. Journal of Nematology, 44: 153–161.
 
Půža V. (2015): Control of insect pests by entomopathogenic nematodes. In: Lugtenberg B. (ed.): Principles of Plant-microbe Interactions. Cham, Springer International Publishing: 175–183.
 
Rasmann S., Turlings T.C.J. (2008): First insights into specificity of belowground tritrophic interactions. Oikos, 117: 362–369. https://doi.org/10.1111/j.2007.0030-1299.16204.x
 
Rasmann S., Hiltpold I., Ali J. (2012): The role of root-produced volatile secondary metabolites in mediating soil interactions. In: Montanaro G., Cichio B. (eds): Advances in Selected Plant Physiology Aspects. Rijeka, InTech: 269–290.
 
Rasmann S., Erwin A.C., Halitschke R., Agrawal A.A. (2011): Direct and indirect root defences of milkweed (Asclepias syriaca): Trophic cascades, trade-offs and novel methods for studying subterranean herbivory. Journal of Ecology, 99: 16–25. https://doi.org/10.1111/j.1365-2745.2010.01713.x
 
Rasmann S., Köllner T.G., Degenhardt J., Hiltpold I., Toepfer S., Kuhlmann U., Gershenzon J., Turlings T.C.J. (2005): Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature, 434: 732–737. https://doi.org/10.1038/nature03451
 
Robert C.A.M., Zhang X., Machado R.A.R., Schirmer S., Lori M., Mateo P., Erb M., Gershenzon J. (2017): Sequestration and activation of plant toxins protect the western corn rootworm from enemies at multiple trophic levels. eLife, 6: e29307. doi: 10.7554/eLife.29307 https://doi.org/10.7554/eLife.29307
 
Rovesti L., Deseö K.V. (1990): Compatibility of chemical pesticides with the entomopathogenic nematodes, Steinernema carpocapsae Weiser and S. feltiae Filipjev (Nematoda: Steinernematidae). Nematologica, 36: 237–245. https://doi.org/10.1163/002925990X00202
 
Schnee C., Köllner T.G., Held M., Turlings T.J.C., Gershenzon J., Degenhardt J. (2006): The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proceedings of the National Academy of Sciences of the United States of America, 103: 1129–1134. https://doi.org/10.1073/pnas.0508027103
 
Schroer S., Ziermann D., Ehlers R.U. (2005): Mode of action of a surfactant-polymer formulation to support performance of the entomopathogenic nematode Steinernema carpocapsae for control of diamondback moth larvae (Plutella xylostella). Biocontrol Science and Technology, 15: 601–613. https://doi.org/10.1080/09583150500088694
 
Shapiro-Ilan D.I., Lewis E.E., Tedders W.L. (2003): Superior efficacy observed in entomopathogenic nematodes applied in infected-host cadavers compared with application in aqueous suspension. Journal of Invertebrate Pathology, 83: 270–272. https://doi.org/10.1016/S0022-2011(03)00101-0
 
Shapiro-Ilan D.I., Gouge D.H., Piggott S.J., Fife J.P. (2006): Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biological Control, 38: 124–133. https://doi.org/10.1016/j.biocontrol.2005.09.005
 
Shapiro-Ilan D., Lewis E.E., Campbell J.F., Kim-Shapiro D.B. (2012): Directional movement of entomopathogenic nematodes in response to electrical field: effect of species, magnitude of voltage, and infective juvenile age. Journal of Invertebrate Pathology, 109: 34–40. https://doi.org/10.1016/j.jip.2011.09.004
 
Sher R.B., Parella M.P. (1999): Biological control of the leafminer, Liriomyza trifolii, in chrysanthemums: Implications for intraguild predation between Diglyphus begini and Steinernema carpocapsae. Bulletin of the International Organization for Biological and Integrated Control of Noxious Animals and Plants: Integrated Control in Glasshouses, 22: 221–224.
 
Smits P.S. (1996): Post-application persistence of entomopathogenic nematodes. Biocontrol Science and Technology, 6: 379–387. https://doi.org/10.1080/09583159631352
 
Toepfer S., Haye T., Erlandson M., Goettel M., Lundgren J.G., Kleespies R.G., Weber D.C., Walsh G.C., Peters A., Ehlers R.U., Strasser H., Moore D., Keller S., Vidal S., Kuhlmann U. (2009): A review of the natural enemies of beetles in the subtribe Diabroticina (Coleoptera: Chrysomelidae): Implications for sustainable pest management. Biocontrol Science and Technology, 19: 1–65. https://doi.org/10.1080/09583150802524727
 
Turlings T.C.J., Ton J. (2006): Exploiting scents of distress: The prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Current Opinion in Plant Biology, 9: 421–427. https://doi.org/10.1016/j.pbi.2006.05.010
 
Turlings T.C.J., Hiltpold I., Rasmann S. (2012): The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes. Plant Soil, 359: 51–60. https://doi.org/10.1007/s11104-012-1295-3
 
Turlings T.C.J., Tumlinson J.H., Lewis W.J. (1990): Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science, 250: 1251–1253. https://doi.org/10.1126/science.250.4985.1251
 
van Tol R.W.H.M., van der Sommen A.T.C., Boff M.I.C., van Bezooijen J., Sabelis M.W., Smits P.H. (2001): Plants protect their roots by alerting the enemies of grubs. Ecology Letters, 4: 292–294. https://doi.org/10.1046/j.1461-0248.2001.00227.x
 
Vieira C.R., Blassioli Moras M.C., Borges M., Sujii E.R., Laumann R.A. (2013): cis-Jasmone indirect action on egg parasitoids (Hymenoptera: Scelionidae) and its application in biological control of soybean stink bugs (Hemiptera: Pentatomidae). Biological Control, 64: 75–82. https://doi.org/10.1016/j.biocontrol.2012.10.004
 
Voglar G.E., Mrak T., Križman M., Jagodič A., Trdan S., Laznik Ž. (2019): Effect of contaminated soil on multitrophic interactions in a terrestrial system. Plant and Soil, 435: 337–351. https://doi.org/10.1007/s11104-018-03903-z
 
von Mérey G., Veyrat N., Mahuku G., Valdez R.L., Turlings T.J.C., D’Alessandro M. (2011): Dispensing synthetic green leaf volatiles in maize fields increases the release of sesquiterpens by the plants, but has little effect on the attraction of pest and beneficial insects. Phytochemistry, 72: 1838–1847. https://doi.org/10.1016/j.phytochem.2011.04.022
 
von Mérey G., Veyrat N., Mahuku G., Valdez R.L., Turlings T.J.C., D’Alessandro M. (2012): Minor effects of two elicitors of insect and pathogen resistance on volatile emissions and parasitism of Spodopetra frugiperda in Mexican maize fields. Biological Control, 60: 7–15. https://doi.org/10.1016/j.biocontrol.2011.09.010
 
Wang Y., Gaugler R. (1998): Host and penetration site location by entomopathogenic nematodes against Japanese beetle larvae. Journal of Invertebrate Pathology, 72: 313–318. https://doi.org/10.1006/jipa.1998.4805
 
Wenke K., Kai M., Piechulla B. (2010): Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta, 231: 499–506. https://doi.org/10.1007/s00425-009-1076-2
 
Wilson M.J., Ehlers R.U., Glazer I. (2012): Entomopathogenic nematode foraging strategies – is Steinernema carpocapsae really an ambush forager? Nematology, 14: 389–394. https://doi.org/10.1163/156854111X617428
 
Wright D.J., Peters A., Schroer S., Fife J.P. (2005): Application technology. In: Grewal P.S., Ehlers R.U., Shapiro-Ilan D.I. (eds): Nematodes as Biocontrol Agents. Wallingford, CABI Publishing: 91–106.
 
Xiao Y., Wang Q., Erb M., Turlings T.J.C., Ge L., Hu L., Li J., Han X., Zhang T., Lu J. (2012): Specific herbivore-induced volatiles defend plants and determine insect community composition on the field. Ecology Letters, 15: 1130–1139. https://doi.org/10.1111/j.1461-0248.2012.01835.x
 
download PDF

© 2019 Czech Academy of Agricultural Sciences