Genetic diversity among asexual and sexual progenies of Phytophthora capsici detected with ISSR markers

https://doi.org/10.17221/28/2021-PPSCitation:

Li P., Liu D. (2021): Genetic diversity among asexual and sexual progenies of Phytophthora capsici detected with ISSR markers. Plant Protect. Sci., 57: 271–278.  

download PDF

The population structure of Phytophthora capsici among asexual and sexual progenies was analyzed using ISSR. Thirty asexual progenies of one parent and three sexual populations were assayed for genetic diversity using 5 ISSR primers and DNA from 120 offspring of P. capsici was amplified. In total, 71 reproducible ISSR fragments were obtained, of which 100% were polymorphic, revealing high polymorphism among the isolates. Among them, the percentages of polymorphism of sexual and asexual progeny isolates were 100.00 and 77.46%, respectively. Genetic similarity coefficients among all the isolates ranged from 0.54 to 0.73. The sexual offspring population showed much more variability than the asexual offspring population with 76.26% variability attributed to diversity within populations as compared with 23.74% among populations. This research reveals that the sexual progeny population of P. capsici contributes more genetic diversity than that of asexual progeny population.

References:
Archana B., Kini K.R., Prakash H.S. (2014): Genetic diversity and population structure among isolates of the brown spot fungus, Bipolaris oryzae, as revealed by inter-simple sequence repeats (ISSR). African Journal of Biotechnology, 13: 238–244. https://doi.org/10.5897/AJB2013.12063
 
Babadoost M. (2000): Outbreak of Phytophthora foliar blight and fruit rot in processing pumpkin fields in Illinois. Plant Disease, 84: 1345. doi: 10.1094/PDIS.2000.84.12.1345A https://doi.org/10.1094/PDIS.2000.84.12.1345A
 
Castro-Rocha A., Shrestha S., Lyon B., Grimaldo-Pantoja G.L., Flores-Marges J.P., Flores-Marges J., Aguirre-Ramirez M., Osuna-Avila P., Gomez-Dorantes N., Avila-Quezada G., de Jesus Luna-Ruiz J., Rodriguez-Alvarado G., Fernandez-Pavia S.P., Lamour K. (2016): An initial assessment of genetic diversity for Phytophthora capsici in northern and central Mexico. Mycological Progress, 15: 1–12. https://doi.org/10.1007/s11557-016-1157-0
 
Chen F.X., Qi Y.X., Gao Z.M., Pan Y.M., Cao J., Xu R.Y. (2005): On new liquid media for inducing sporangia of Phytophthora spp. Plant Protection, 31: 34–37.
 
Do K.S., Kang W.S., Park E.W. (2012): A forecast model for the first occurrence of Phytophthora blight on chili pepper after overwintering. The Plant Pathology Journal, 28: 172–184. https://doi.org/10.5423/PPJ.2012.28.2.172
 
Dobrowolski M.P., Tommerup I.C., Shearer B.L., Brien P.A. (2003): Three clonal lineages of Phytophthora cinnamomi in Australia revealed by microsatellites. Phytopathology, 93: 695–704. https://doi.org/10.1094/PHYTO.2003.93.6.695
 
Dunn A.R., Milgroom M.G., Meitz J.C., McLeod A., Fry W.E., McGrath M.T., Dillard H.R., Smart C.D. (2010): Population structure and resistance to mefenoxam of Phytophthora capsici in New York State. Plant Disease, 94: 1461–1468. https://doi.org/10.1094/PDIS-03-10-0221
 
Erwin D.C., Ribeiro O.K. (1996): Phytophthora diseases worldwide. St. Paul, The American Phytopathological Society.
 
Fry W. E., Goodwin S.B., Matuszak J.M., Spielman L.J., Milgroom M.G., Drenth A. (1992): Population genetics and intercontinental migrations of Phytophthora infestans. Annual Review of Phytopathology, 30: 107–129. https://doi.org/10.1146/annurev.py.30.090192.000543
 
Gilardi G., Baudino M., Moizio M., Pugliese M., Garibaldi A., Gullino M.L. (2013): Integrated management of Phytophthora capsici on bell pepper by combining grafting and compost treatment. Crop Protection, 53: 13–19. https://doi.org/10.1016/j.cropro.2013.06.008
 
Gobena D., Roig J., Galmarini C., Hulvey J., Lamour K. (2012): Genetic diversity of Phytophthora capsici isolates from pepper and pumpkin in Argentina. Mycologia, 104: 102–107. https://doi.org/10.3852/11-147
 
Goodwin S.B., Saghai-Maroof M.A., Allard R.W., Webster R.K. (1993): Isozyme variation within and among populations of Rhynchosporium secalis in Europe, Australia and the United States. Mycological Research, 97: 49–58. https://doi.org/10.1016/S0953-7562(09)81112-X
 
Goodwin S.B., Sujkowski L.S., Fry W.E. (1995): Rapid evolution of pathogenicity within clonal lineages of the potato late blight disease fungus. Phytopathology, 85: 669–676. https://doi.org/10.1094/Phyto-85-669
 
Granke L.L., Quesada-Ocampo L.M., Lamour K., Hausbeck M.K. (2012): Advances in research on Phytophthora capsici on vegetable crops in the United States. Plant Disease, 95: 1588–1600. https://doi.org/10.1094/PDIS-02-12-0211-FE
 
Grunwald N.J., Goodwin S.B., Milgroom M.G., Fry W.E. (2003): Analysis of genotypic diversity data for populations of microorganisms. Phytopathlogy, 93: 738–746. https://doi.org/10.1094/PHYTO.2003.93.6.738
 
Hausbeck M.K., Lamour K.H. (2004): Phytophthora capsici on vegetable crops: Research progress and management challenges. Plant Disease, 88: 1292–1303. https://doi.org/10.1094/PDIS.2004.88.12.1292
 
Heiser C.B., Smith P.G. (1953): The cultivated Capsicum pepper. Economic Botany, 7: 214–227. https://doi.org/10.1007/BF02984948
 
Hord M.J., Ristaino J.B. (1991): Effects of physical and chemical factors on the germination of oospores of Phytophthora capsici in vitro. Phytopathology, 81: 1541–1546. https://doi.org/10.1094/Phyto-81-1541
 
Hu J., Diao Y., Zhou Y., Lin D., Bi Y., Pang Z., Trout F.R., Liu X., Lamour K. (2013): Loss of heterozygosity drives clonal diversity of Phytophthora capsici in China. PLoS ONE, 8: e82691. doi: 10.1371/journal.pone.0082691 https://doi.org/10.1371/journal.pone.0082691
 
Hulvey J., Hurtado-González O., Aragón-Caballero L., Gobena D., Storey D., Finley L., Lamour K. (2011): Genetic diversity of the pepper pathogen Phytophthora capsici on farms in the Amazonian high jungle of Peru. American Journal of Plant Sciences, 2: 461–466. https://doi.org/10.4236/ajps.2011.23054
 
Hurtado-Gonzales O., Aragon-Caballero L., Apaza-Tapia W., Donahoo R., Lamour K. (2008): Survival and spread of Phytophthora capsici in coastal Peru. Phytopathology, 98: 688–694. https://doi.org/10.1094/PHYTO-98-6-0688
 
Ilieva S., Vintanov M. (1980): Cultural, morphological and physiological characteristics of Phytophthora capsici Leonian in sweet peppers. Gradinarska I Lozarska Nauka, 17: 61–68.
 
Kashyap P.L., Rai S., Kumar S., Srivastava A.K. (2016): Genetic diversity, mating types and phylogenetic analysis of Indian races of Fusarium oxysporum f. sp. ciceris from chickpea. Archives of Phytopathology and Plant Protection, 49: 533–553. https://doi.org/10.1080/03235408.2016.1243024
 
Lamour K.H., Hausbeck M.K. (2000): Mefenoxam insensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathology, 90: 396–400. https://doi.org/10.1094/PHYTO.2000.90.4.396
 
Lamour K.H., Hausbeck M.K. (2001): The dynamics of mefenoxam insensitivity in a recombining population of Phytophthora capsici characterized with amplified fragment length polymorphism markers. Phytopathology, 91: 553–557. https://doi.org/10.1094/PHYTO.2001.91.6.553
 
Lamour K.H., Hausbeck M.K. (2002): The spatiotemporal genetic structure of Phytophthora capsici in Michigan and implications for disease management. Phytopathlogy, 92: 681–684.  https://doi.org/10.1094/PHYTO.2002.92.6.681
 
Lamour K.H., Stam R., Jupe J., Huitema E. (2012): The oomycete broad-host-range pathogen Phytophthora capsici. Molecular Plant Pathology, 13: 329–337. https://doi.org/10.1111/j.1364-3703.2011.00754.x
 
Leonian L.H. (1922): Stem and fruit blight of peppers caused by Phytophthora capsici sp. nov. Phytopathology, 12: 401–408.
 
Li P., Cao S., Dai Y.L., Li X.L., Xu D.F., Guo M., Pan Y.M., Gao Z.M. (2012): Genetic diversity of Phytophthora capsici (Pythiaceae) isolates in Anhui Province of China based on ISSR-PCR markers. Genetics and Molecular Research, 11: 4285–4296. https://doi.org/10.4238/2012.December.17.4
 
Li P., Liu D., Guo M., Pan Y.M., Chen F.X., Zhang H.J., Gao Z.M. (2017): A PCR-based assay for distinguishing between A1 and A2 mating types of Phytophthora capsici. Journal of the American Society for Horticultural Science, 142: 260–264.  https://doi.org/10.21273/JASHS04013-17
 
McDonald B.A., Linde. C. (2002): Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40: 349–379. https://doi.org/10.1146/annurev.phyto.40.120501.101443
 
Nei M. (1972): Genetic distance between populations. The American Naturalist, 106: 283–292. https://doi.org/10.1086/282771
 
Pennisi A.M., Agosteo G. (1998): Insensitivity to metalaxyl among isolates of Phytophthora capsici causing root and crown rot of pepper in southern Italy. Plant Disease, 82: 1283. doi: 10.1094/PDIS.1998.82.11.1283A https://doi.org/10.1094/PDIS.1998.82.11.1283A
 
Piotrowskaa M.J., Ennosb R.A., Fountainea J.M., Burnetta F.J., Kaczmareka M., Hoebea P.N. (2016): Development and use of microsatellite markers to study diversity, eproduction and population genetic structure of the cereal pathogen Ramularia collo-cygni. Fungal Genetics and Biology, 87: 64–71. https://doi.org/10.1016/j.fgb.2016.01.007
 
Qi R.D., Wang T., Zhao W., Li P., Ding J.C., Gao Z.M. (2012): Activity of ten fungicides against Phytophthora capsici isolates resistant to metalaxy. Journal of Phytopathology, 160: 717–722.  https://doi.org/10.1111/jph.12009
 
Rampersad S.N. (2013): Genetic structure of Colletotrichum gloeosporioides sensu lato isolates infecting papaya inferred by multilocus ISSR markers. Phytopathology, 103: 182–189.  https://doi.org/10.1094/PHYTO-07-12-0160-R
 
Rezinciuca S., Galindob J., Montserratc J., Diéguez-Uribeondoa J. (2014): AFLP-PCR and RAPD-PCR evidences of the transmission of the pathogen Aphanomyces astaci (Oomycetes) to wild populations of European crayfish from the invasive crayfish species, Procambarus clarkii. Fungal Biology, 118: 612–620. https://doi.org/10.1016/j.funbio.2013.10.007
 
Ristaino J.B., Johnston S.A. (1999): Ecologically based approaches to management of Phytophthora blight on bell pepper. Plant Disease, 83: 1080–1089. https://doi.org/10.1094/PDIS.1999.83.12.1080
 
Rohlf F.J. (2000): NTSYSpc: Numerical taxonomy and multivariate analysis system, version 2.1, Exeter Software. New York, Setauket.
 
Silvar C., Merino F., Diaz J. (2006): Diversity of Phytophthora capsici in northwest Spain: Analysis of virulence, metalaxyl response, and molecular characterization. Plant Disease, 90: 1135–1142. https://doi.org/10.1094/PD-90-1135
 
Slatkin M., Barton N.H. (1989): A comparison of three indirect methods for estimating the average level of gene flow. Evolution, 43: 1349–1368. https://doi.org/10.1111/j.1558-5646.1989.tb02587.x
 
Tucker M.A., Moffat C.S., Ellwood S.R., Tan K.C., Jayasena K., Oliver R.P. (2015): Development of genetic SSR markers in Blumeria graminis f. sp. hordei and application to isolates from Australia. Plant Pathology, 64: 337–343. https://doi.org/10.1111/ppa.12258
 
Wright S. (1978): Evolution and the Genetics of Populations.Chicago, University of Chicago Press.
 
Yeh F.C., Yang R.C., Boyle T. (1999): POPGENE version 1.3.1, Microsoft window-based freeware for population genetic analysis. Alberta, University of Alberta and Centre for International Forestry Research.
 
Yin J., Jackson K.L., Candole B.L., Csinos A.S., Langston D.B., Ji P. (2012): Aggressiveness and diversity of Phytophthora capsici on vegetable crops in Georgia. Annals of Applied Biology, 160: 191–200. https://doi.org/10.1111/j.1744-7348.2012.00532.x
 
You C.P., Zheng X.B., KO W.H. (2001): Variability resulting from selfing and outcrossing in Phytophthora cactorum. Journal of general plant pathology, 67: 169–174. https://doi.org/10.1007/PL00013007
 
Zheng X.B. (1997): Phytophthora and Research Techniques of Phytophthora. Beijing, China Agriculture Press.
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti