Control of rice blast disease caused by Magnaporthe oryzae by application of antifungal nanomaterials from Emericella nidulans

Song J.J., Soytong K., Kanokmedhakul S. (2022): Control of rice blast disease caused by Magnaporthe oryzae by application of antifungal nanomaterials from Emericella nidulans. Plant Protect. Sci., 58: 40-48.

download PDF

Metabolites of Emericella nidulans (EN) were separated by chromatographic methods from crude hexane included emericellin and sterigmatocystin, while crude ethyl acetate found demethylsterigmatocystin. These metabolites proved to be antagonistic to Magnaporthe oryzae, the causal agent of rice blast. Crude extracts and nano-particles derived from EN inhibited M. oryzae. The ethyl acetate crude extract derived inhibited M. oryzae with an effective dose (ED50) of 66 μg/mL. The nanoparticles showed better inhibition of M. oryzae than crude extracts at low concentrations. Nanoparticles, namely from crude ethyl acetate, crude methanol and crude hexane of EN were active against M. oryzae with ED50 of 4.2 μg/mL, 4.5 μg/mL, 8.9 μg/mL, respectively. It detected sakuranetin (rate of flow value is 0.09) in nano-EN treated rice leaves. These nanoparticles inhibited M. oryzae and acted as a new elicitor to induce immunity.

Akbari B.M., Tavandashti P., Zandrahimi M. (2011): Particle size characterization of nano-particles – A practical approach. Iranian Journal of Materials Science and Engineering, 8: 48–56.
Altschul S.F., Madden T.L., Schaffer A.A., Zhang J.H., Zhang Z., Miller W., Lipman D.J. (1997): Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25: 3389–3402.
Chen Y., Zhao J.L., Mao G.L., Wang C.Y., Lin F., Xu H.H., Zhu X.Y. (2016): Tricyclazole induced expression of genes associated with rice resistance. Journal of South China Agricultural University, 37: 35–40.
Chuwa C.J., Mabagala R.B., Reuben M.S.O.W. (2015): Pathogenic variation and molecular characterization of Pyricularia oryzae, causal agent of rice blast disease in Tanzania. International Journal of Science and Research, 4: 1131–1139.
Dar J., Soytong K. (2014): Construction and characterization of copolymer nanomaterials loaded with bioactive compounds from Chaetomium species. Journal of Agricultural Technology, 10: 823–831.
Dillon V.M., Overton L., Grayer R.J., Harborne J.E. (1997): Differences in phytoalexin response among rice cultivars of different resistance to blast. Phytochemistry, 44: 599–603.
Hasegawa M., Mitsuhara I., Seo S., Okada K., Yamane H., Iwai T., Ohashi Y. (2014): Analysis on blast fungus-responsive characters of a flavonoid phytoalexin Sakuranetin; Accumulation in infected rice leaves, antifungal activity and detoxification by fungus. Molecules, 19: 11404–11418.
Kodama O., Miyakawa J., Akatsuka T., Kiyosawa S. (1992): Sakuranetin, a flavanone phytoalexin from ultraviolet-irradiated rice leaves. Phytochemistry, 31: 3807–3809.
Li M., Huang Q., Wu Y. (2011): A novel chitosan-poly (lactide) copolymer and its submicron particles as imidacloprid carriers. Pest Management Science, 67: 831–836.
Mok S.L. (2009): Quantificatioin of sakuranetin in paddy leaves and stem after elicitation with abiotic elicitors (UV, AgNO3, CuSO4). Modern Applied Science, 3: 210–216.
Moosophon P., Kanokmedhakul S., Kanokmedhakul K., Soytong K. (2009): Prenylxanthones and a bicyclo[3.3.1]nona-2,6-diene derivative from the fungus Emericella rugulosa. Journal of Natural Products, 72: 1442–1446.
Nalwa H.S. (2004): Encyclopedia for Nanoscience and Nanotechnology. Los Angeles, American Scientific Publishers.
Narayanasamy P. (2013): Biological Management of Diseases of Crops. Volume 1: Characteristics of Biological Control Agents. New York, Springer.
Pornsuriya C., Soytong K., Poeaim S., Kanokmedhakul S., Khumkomkhet P., Lin F.C., Wang H.K., Hyde K.D. (2011): Chaetomium siamense sp. nov., a soil isolate from Thailand, produces a new chaetoviridin, G. Mycotaxon, 115: 17–19.
Rai M., Ingle A. (2012): Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology, 94: 287–293.
Salata O.V. (2004): Applications of nanoparticles in biology and medicine. Journal of Nanobiotechnology, 2: 3. doi: 10.1186/1477-3155-2-3
Sibounnavong P., Soytong K. (2011): Antifungal metabolites from antagonistic fungi used to control tomato wilt fungus Fusarium oxysporum f. sp. lycopersici. African Journal of Biotechnology, 10: 19714–19722.
Soutter W. (2012): Nanotechnology in agriculture. Manchester, Publishers. Available at ID=3141#1%204
Soytong K., Quimio T.H. (1989): Antagonism of Chaetomium globosum to the rice blast pathogen, Pyricularia oryzae. Kasetsart Journal (Natural Science), 23: 198–203.
Tamura K., Dudley J., Nei M., Kumar S. (2007): MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24: 1596–1599.
Thohinung S., Kanokmedhakul S., Kanokmedhakul K., Kukongviriyapan V., Tusskorn O., Soytong K. (2010): Cytotoxic 10-(indol-3-yl)-[13]cytochalasans from the fungus Chaetomium elatum ChE01. Archives of Pharmacal Research, 33: 1135–1141.
Wang Z.L. (2000): Characterization of Nanophase Materials. Weinheim, Wiley-VCH Verlag GmbH.
Wang G.L., Valent B. (2009): Advances in Genetics, Genomics and Control of Rice Blast Disease. Dordrecht, Springer.
Wei A., Juan W., Wang X., Hou D., Wei Q. (2012): Morphology and surface properties of poly (L-lactic acid)/captopril composite nanofiber membranes. Journal of Engineered Fibers and Fabrics, 7: 129–135.
Zeigler R.S., Leong S.A., Teng P.S. (1994): Rice Blast Disease. Wallingford, CAB International in association with the International Rice Research Institute: 451–527.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti