Ansari M.A., Brownbridge M., Shah F.A, Butt T.M. (2008): Efficacy of entomopathogenic fungi against soil-dwelling life stages of western flower thrips, Frankliniella occidentalis, in plant-growing media. Entomologia Experimentalis et Applicata, 127: 80–87.
https://doi.org/10.1111/j.1570-7458.2008.00674.x
Bielza P. (2008): Insecticide resistance management strategies against the western flower thrips, Frankliniella occidentalis. Pest Management Science, 64, : 1131–1138.
https://doi.org/10.1002/ps.1620
Bohinc T., Kreiter S., Tixier M.S., Vierbergen G., Trdan S. (2018): Predatory mites (Acari: Phyto-seiidae) first recorded on cultivated plants in Slovenia in the period 2012–2017. Acta Agricul-turae Slovenica, 111: 493–499.
https://doi.org/10.14720/aas.2018.111.2.21
Börner K., Chen C., Boyack K. (2003): Visualizing knowledge domains. Annual Review of Information Science & Technology, 37: 179–255.
Bouagga S., Urbaneja A., Rambla J.L., Flors V., Granell A., Jaquesc J.A., Pérez-Hedo M. (2018a): Zoophytophagous mirids provide pest controlby inducing direct defences, antixenosis andattraction to parasitoids in sweet pepper plants. Pest Management Science, 74: 1286–1296.
Bouagga S., Urbaneja A., Pérez-Hedo M. (2018b): Combined use of predatory mirids with Am-blyseius swirskii (Acari: Phytoseiidae) to enhance pest management in sweet pepper. Journal of Economic Entomology, 111: 1112–1120.
https://doi.org/10.1093/jee/toy072
Broughton S., Herron G.A. (2009): Potential new insecticides for the control of western flower thrips (Thysanoptera: Thripidae) on sweet pepper, tomato, and lettuce. Journal of Economic En-tomology, 102: 646–651.
https://doi.org/10.1603/029.102.0224
Callon M., Courtial J.P., Turner W.A., Bauin S. (1983): From translations to problematic net-works: An introduction to co-word analysis. Social Science Information, 22: 191–235.
https://doi.org/10.1177/053901883022002003
Callon M., Courtial J.P., Laville F. (1991): Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemistry. Scien-tometrics, 22: 155–205.
https://doi.org/10.1007/BF02019280
Calver M.C., O'Brien P.A., Lilith M. (2012): Australasian Plant Pathology: an analysis of authorship and citations in the 21st century. Australasian Plant Pathology, 41: 179–187.
https://doi.org/10.1007/s13313-011-0106-2
Choh Y., Sabelis M.W., Janssen A. (2015): Distribution and oviposition site selection by predatory mites in the presence of intraguild predators. Experimental and Applied Acarology, 67: 477–491.
https://doi.org/10.1007/s10493-015-9970-8
Christiansen I., Szin S., Schausberger P. (2016): Benefit-cost trade-offs of early learning in foraging predatory mites Amblyseius swirskii. Scientific Reports, 6: 23571. doi: 10.1038/srep23571
https://doi.org/10.1038/srep23571
Christiansen I., Schausberger P. (2017): Interference in early dual-task learning by predatory mites. Animal Behaviour, 133: 21–28.
https://doi.org/10.1016/j.anbehav.2017.09.005
Cobo M.J., López-Herrera A.G., Herrera-Viedma E., Herrera F. (2011): Science mapping soft-ware tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62: 1382–1402.
https://doi.org/10.1002/asi.21525
Coll M., Ridgway R.I. (1995): Functional and numerical responses of Orius insidiosus (Heterop-tera, Anthocoridae) to its prey in different vegetable crops. Annals of the Entomological Society of America, 88: 732–738.
https://doi.org/10.1093/aesa/88.6.732
De Nardo E.A.B., Hopper K.R. (2004): Using the literature to evaluate parasitoid host ranges: a case study of Macrocentrus grandii (Hymenoptera: Braconidae) introduced into North America to control Ostrinia nubilalis (Lepidoptera: Crambidae). Biological Control, 31: 280–295.
https://doi.org/10.1016/j.biocontrol.2004.07.003
Ebssa L., Borgemeister C., Berndt O., Poehling H.M. (2001): Efficacy of entomopathogenic nematodes against soil-dwelling life stages of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Journal of Invertebrate Pathology, 78: 119–127.
https://doi.org/10.1006/jipa.2001.5051
Elimem M., Harbi A., Limem-Sellemi E., Ben Othmen S., Chermiti B. (2018): Orius laevigatus (Insecta; Heteroptera) local strain, a promising agent in biological control of Frankliniella occiden-talis (Insecta; Thysanoptra) in protected pepper crops in Tunisia. Euro-Mediterranean Journal fo Environmental Integration, 3: 5. doi: 10.1007/s41207-017-0040-y
https://doi.org/10.1007/s41207-017-0040-y
Farazmand A., Fathipour Y., Kamali K. (2014): Cannibalism in Scolothrips longicornis (Thysa-noptera: Thripidae), Neoseiulus californicus and Typhlodromus bagdasarjani (Acari: Phytosei-idae). Systematic and Applied Acarology, 19: 471–480.
https://doi.org/10.11158/saa.19.4.10
Funderburk J., Stavisky J., Olson S. (2000): Predation of Frankliniella occidentalis (Thysanoptera: Thripidae) in field peppers by Orius insidiosus (Hemiptera: Anthocoridae). Environmental Ento-mology, 29: 376–382.
https://doi.org/10.1093/ee/29.2.376
Ghasemloo Z., Pakyari H., Arbab A. (2016): Cannibalism and intraguild predation in the phyto-seiid mites Phytoseiulus persimilis and Typhlodromus bagdasarjani (Acari: Phytoseiidae). Interna-tional Journal of Acarology, 42: 149–152.
https://doi.org/10.1080/01647954.2016.1141983
Groves R.L., Walgenbach J.F., Moyer J.W., Kennedy G.G. (2003): Seasonal dispersal patterns of Frankliniella fusca (Thysanoptera: Thripidae) and tomato spotted wilt virus occurrence in central and eastern North Carolina. Journal of Economic Entomology, 96: 1–11.
https://doi.org/10.1603/0022-0493-96.1.1
Herrick N.J., Cloyd R.A. (2017): Direct and indirect effects of pesticides on the insidious flower bug (Hemiptera: Anthocoridae) under laboratory conditions. Journal of Economic Entomology, 110: 931–940.
https://doi.org/10.1093/jee/tox093
Hernández-Rosas F., García-Pacheco L.A., García-Pacheco K.A., Figueroa-Sandoval B., Salin-as Ruiz J., Sangerman-Jarquín D., Díaz-Sánchez E.L. (2019): Analysis of research on Metarhizium anisopliae in the last 40 years. Revista Mexicana de Ciencias Agrícolas, 22: 155–166.
https://doi.org/10.29312/remexca.v0i22.1866
Hoddle M.S., Robinson L., Drescher K., Jones J. (2000): Developmental and reproductive biolo-gy of a predatory Franklinothrips n. sp (Thysanoptera: Aeolothripidae). Biological Control, 18: 27–38.
https://doi.org/10.1006/bcon.1999.0809
Hu C., Cao L.Z. (2018): Bibliometric and visual analysis of planthopper research between 1980 and 2017. Current Science, 114: 2445–2452.
https://doi.org/10.18520/cs/v114/i12/2445-2452
Hussein M.A., El-Mahdi F.S. (2019) Efficiency of three formulated entomopathogenic nema-todes against onion thrips, Thrips tabaci under aquaculture system. Journal of Biopesticides, 12: 134–138
Janssens F., Leta J., Glänzel W., De Moor B. (2006): Towards mapping library and information science. Information Processing & Management, 42: 1614–1642.
Jensen S.E. (2000): Insecticides resistance in the western flowerthrips, Frankliniella occidentalis. Integrated Pest Management Reviews, 5: 131–146.
https://doi.org/10.1023/A:1009600426262
Kashkouli M., Khajehali J., Poorjavad N. (2014): Impact of entomopathogenic nematodes on Thrips tabaci Lindeman (Thysanoptera: Thripidae) life stages in the laboratory and under semi-field conditions. Journal of Biopesticides, 7: 77–84.
Khaliq A., Afzal M., Raza A.M., Kamran M., Khan A.A., Aqeel M.A., Ullah M.I., Khan B.S., Kanwal H. (2018): Suitability of Thrips tabaci L. (Thysonaptera: Thripidae) as prey for the phyto-seiid mite, Neoseiulus barkeri Hughes (Acari: Phytoseiidae). African Entomology, 26: 131–135.
https://doi.org/10.4001/003.026.0131
Kiman Z.B., Yeargan K.V. (1985): Development and reproduction of the predator Orius insidio-sus (Hemiptera: Anthocoridae) reared on diets of selected plant material and arthropod prey. An-nals of the Entomological Society of America, 78: 464–467.
https://doi.org/10.1093/aesa/78.4.464
Kolle S., Shankarappa T.H., Manjunatha R.T.B., Muniyappa A. (2015): Scholarly communication in the International Journal of Pest Management: a bibliometric analysis from 2005 to 2014. Jour-nal of Agricultural & Food Information, 16: 301–314.
Lang A. (2003): Intraguild interference and biocontrol effects of generalist predators in a winter wheat field. Oecologia, 134: 144–153.
https://doi.org/10.1007/s00442-002-1091-5
Lei G., Liu F., Liu P., Zhou Y., Jiao T., Dang Y.H. (2019): A bibliometric analysis of forensic entomology trends and perspectives worldwide over the last two decades (1998–2017). Forensic Science International, 295: 72–82.
https://doi.org/10.1016/j.forsciint.2018.12.002
Liu X., Reitz S.R., Lei Z., Wang H. (2019): Thermoregulatory response of Frankliniella occiden-talis (Pergande) (Thysanoptera: Thripidae) to infection by Beauveria bassiana, and its effect on survivorship and reproductive success. Science Report, 9: 13625. doi: 10.1038/s41598-019-49950-z
https://doi.org/10.1038/s41598-019-49950-z
Loomans A.J.M. (2003): Parasitoids as Biological Control Agents of Thrips Pests. [Ph.D. Thesis]. Wageningen, Wageningen Universiteit: 208.
Mautino G.C., Bosco L., Tavella L. (2014): Impact of control strategies on Thrips tabaci and its predator Aeolothrips intermedius on onion crops. Phytoparasitica, 42: 41–52.
https://doi.org/10.1007/s12600-013-0335-8
Mehle N., Trdan S. (2012): Traditional and modern methods for the identification of thrips (Thysanoptera) species. Journal of Pest Science, 85: 179–190.
https://doi.org/10.1007/s10340-012-0423-4
Moritz G. (1994): Pictorial key to the economically important species of Thysanoptera in central Europe. EPPO Bulletin, 24: 181–208.
https://doi.org/10.1111/j.1365-2338.1994.tb01060.x
Morse J.G., Hoddle M.S. (2006): Invasion biology of thrips. Annual Review of Entomology, 51: 67–89.
https://doi.org/10.1146/annurev.ento.51.110104.151044
Mound L.A., Morris D.C. (2007): The insect order Thysanoptera: classification versus systemat-ics. Zootaxa, 1668: 395–411.
https://doi.org/10.11646/zootaxa.1668.1.21
Mound L.A. (2004): Australian Thysanoptera-biological diversity and a diversity of studies. Aus-tralian Journal of Entomology, 43: 248–257.
https://doi.org/10.1111/j.1326-6756.2004.00431.x
Mound L.A., Teulon D.A.J. (1995): Thysanoptera as phytophagous opportunists. In: Thrips Biol-ogy and Management. Parker B.L. (ed.): NATO ASI Series, 276. New York, Springer: 3–19.
Mound L.A., Kibby G. (1998): Thysanoptera – An Identification Guide. 2nd ed. Wallingford, CAB International
Murai T., Loomans A.J.M. (2001): Evaluation of an improved method for mass-rearing of thrips and a thrips parasitoid. Entomologia Experimentalis et Applicata, 101: 281–289.
https://doi.org/10.1046/j.1570-7458.2001.00913.x
Negloh K., Hanna R., Schausberger P. (2008): Comparative demography and diet breadth of Brazilian and African populations of the predatory mite Neoseiulus baraki, a candidate for biological control of coconut mite. Biological Control, 46: 523–531.
https://doi.org/10.1016/j.biocontrol.2008.04.022
Oveja M.F., Riudavets J., Arnó J., Gabarra R. (2016): Does a supplemental food improve the effectiveness of predatory bugs on cucumber? BioControl, 61: 47–56.
Otieno J.A., Pallmann P., Poehling H. (2017): Additive and synergistic interactions amongst Ori-us laevigatus (Heteroptera: Anthocoridae), entomopathogens and azadirachtin for controlling western flower thrips (Thysanoptera: Thripidae). BioControl, 62: 85–95.
https://doi.org/10.1007/s10526-016-9767-7
Pakyari H., Enkegaard A. (2012): Effect of different temperatures on consumption of two spot-ted mite, Tetranychus urticae, eggs by the predatory thrips, Scolothrips longicornis. Journal of Insect Science, 12: 98. doi: 10.1673/031.012.9801
https://doi.org/10.1673/031.012.9801
Piazzol J., Nammour D., Hervouet P., Bout A., Desneux N., Mailleret L. (2010): Comparison of two methods of monitoring thrips populations in a greenhouse rose crop. Journal of Pest Sci-ence, 83: 191–196.
https://doi.org/10.1007/s10340-010-0286-5
Pozzebon A., Boaria A., Duso C. (2015): Single and combined releases of biological control agents against canopy-and soil-dwelling stages of Frankliniella occidentalis in cyclamen. BioCon-trol, 60: 341–350.
https://doi.org/10.1007/s10526-014-9641-4
Pritchard A. (1969): Statistical bibliography or bibliometrics? Journal of Documentation, 25: 348–349
Rotenberg D., Jacobson A.L., Schneweis D., Whitfield. A (2015): Thrips transmission of tospoviruses. Current Opinion in Virology, 15: 80–89.
https://doi.org/10.1016/j.coviro.2015.08.003
Rothman H., Lester G (1985): The use of bibliometric indicators in the study of insecticide re-search. Scientometrics, 8: 247–262.
https://doi.org/10.1007/BF02016939
Salamanca J., Souza B., Rodriguez-Saona C. (2018): Cascading effects of combining synthetic herbivore-induced plant volatiles with companion plants to manipulate natural enemies in an agro-ecosystem. Pest Management Science, 74: 2133–2145.
https://doi.org/10.1002/ps.4910
San-Blas E. (2013): Progress on entomopathogenic nematology research: A bibliometric study of the last three decades: 1980–2010. Biological Control, 66: 102–124.
https://doi.org/10.1016/j.biocontrol.2013.04.002
Sinha B. (2012): Global biopesticide research trends: A bibliometric assessment. Indian Journal of Agricultural Science, 82: 95–101
Song Z.W., Nguyen D.T., Li D.S., De Clercq P. (2019): Continuous rearing of the predatory mite Neoseiulus californicus on an artificial diet. BioControl, 64, 2: 125–137.
https://doi.org/10.1007/s10526-019-09923-7
Stopar K., Mackiewicz-Talarczyk M., Bartol T. (2021): Cotton fiber in Web of Science and Sco-pus: mapping and visualization of research topics and publishing patterns. Journal of Natural Fi-bers, Online first: 1–12.
Trdan S., Valič N., Žežlina I., Bergant K., Žnidarčič D. (2005): Light blue sticky boards for mass trapping of onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), in onion crops: fact or fantasy? Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 112: 173–180.
Vaello T., Sarde S.J., Marcos-García M.Á., de Boer J.G., Pineda A. (2018): Modulation of plant-mediated interactions between herbivores of different feeding guilds: Effects of parasitism and belowground interactions. Science Report, 8: 14424. doi:10.1038/s41598-018-32131-9
https://doi.org/10.1038/s41598-018-32131-9
van Eck N.J., Waltman L. (2010): Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84: 523–538.
https://doi.org/10.1007/s11192-009-0146-3
van Eck N.J., Waltman L. (2011): Text mining and visualization using VOSviewer. ISSI Newslet-ter, 7: 50–54
van Eck N.J., Waltman L., Noyons E.C.M., Buter R.K. (2010): Automatic term identification for bibliometric mapping. Scientometrics, 82: 581–596.
https://doi.org/10.1007/s11192-010-0173-0
van Lenteren J.C. (2012): The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl, 57: 1–20.
https://doi.org/10.1007/s10526-011-9395-1
van Rijn P.C.J., Tanigoshi L.K. (1999): Pollen as food for the predatory mites Iphiseius degen-erans and Neoseiulus cucumeris (Acari: Phytoseiidae): dietary range and life history. Experi-mental and Applied Acarology, 23: 785–802.
https://doi.org/10.1023/A:1006227704122
van Rijn P.C.J., van Houten Y.M., Sabelis M.W. (2002): How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology, 83: 2664–2679.
https://doi.org/10.1890/0012-9658(2002)083[2664:HPBFPF]2.0.CO;2
Waltman L., van Eck N.J., Noyons E.C.M. (2010): A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4: 629–635.
https://doi.org/10.1016/j.joi.2010.07.002
Wu S., He Z., Wang E., Xu X., Lei Z. (2017): Application of Beauveria bassiana and Neoseiulus barkeri for improved control of Frankliniella occidentalis in greenhouse cucumber. Crop Protec-tion, 96: 83–87.
https://doi.org/10.1016/j.cropro.2017.01.013
Wu S., Tang L., Fang F., Li D., Yuan X., Zei L., Gao Y. (2018): Screening, efficacy and mecha-nisms of microbial control agents against sucking pest insects as thrips. Advances in Insect Physi-ology, 55: 199–217.
Xu X., Borgemeister C., Poehling H.M. (2006): Interactions in the biological control of western flower thrips Frankliniella occidentalis (Pergande) and two-spotted spider mite Tetranychus urti-cae Koch by the predatory bug Orius insidiosus Say on beans. Biological Control, 36: 57–64.
https://doi.org/10.1016/j.biocontrol.2005.07.019
Zhao J., Guo X., Tan X., Desneux D., Zappala L., Zhang F., Wang S. (2017): Using Calendula officinalis as a floral resource to enhance aphid and thrips suppression by the flower bug Orius sauteri (Hemiptera: Anthocoridae). Pest Management Science, 73: 515–520.
https://doi.org/10.1002/ps.4474