Thrips and natural enemies through text data mining and visualization

Stopar K., Trdan S., Bartol T. (2021): Thrips and natural enemies through text data mining and visualisation. Plant Protect. Sci., 57: 47–58.

download PDF

Thrips can cause considerable economic damage. In order to reduce the use of agrochemicals research has also focused on different natural enemies. We used bibliometric mapping and visualization to understand the structure of this field. Articles from Web of Science as well as software Vosviewer were used. Analysis of co-occurrence of terms shows the principal research areas: transmission of viruses, chemical or biological control and new species. A third of articles refer to biological control. Visualizations reveal three major groups of beneficials: entomopathogens, parasitoids, and predators. Recently, attention has shifted mainly to predatory mites as biocontrol agents. Our analysis aims to make such information visually more explanatory with better overview of research directions.

Ansari M.A., Brownbridge M., Shah F.A, Butt T.M. (2008): Efficacy of entomopathogenic fungi against soil-dwelling life stages of western flower thrips, Frankliniella occidentalis, in plant-growing media. Entomologia Experimentalis et Applicata, 127: 80–87.
Bielza P. (2008): Insecticide resistance management strategies against the western flower thrips, Frankliniella occidentalis. Pest Management Science, 64, : 1131–1138.
Bohinc T., Kreiter S., Tixier M.S., Vierbergen G., Trdan S. (2018): Predatory mites (Acari: Phyto-seiidae) first recorded on cultivated plants in Slovenia in the period 2012–2017. Acta Agricul-turae Slovenica, 111: 493–499.
Börner K., Chen C., Boyack K. (2003): Visualizing knowledge domains. Annual Review of Information Science & Technology, 37: 179–255.
Bouagga S., Urbaneja A., Rambla J.L., Flors V., Granell A., Jaquesc J.A., Pérez-Hedo M. (2018a): Zoophytophagous mirids provide pest controlby inducing direct defences, antixenosis andattraction to parasitoids in sweet pepper plants. Pest Management Science, 74: 1286–1296.
Bouagga S., Urbaneja A., Pérez-Hedo M. (2018b): Combined use of predatory mirids with Am-blyseius swirskii (Acari: Phytoseiidae) to enhance pest management in sweet pepper. Journal of Economic Entomology, 111: 1112–1120.
Broughton S., Herron G.A. (2009): Potential new insecticides for the control of western flower thrips (Thysanoptera: Thripidae) on sweet pepper, tomato, and lettuce. Journal of Economic En-tomology, 102: 646–651.
Callon M., Courtial J.P., Turner W.A., Bauin S. (1983): From translations to problematic net-works: An introduction to co-word analysis. Social Science Information, 22: 191–235.
Callon M., Courtial J.P., Laville F. (1991): Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemistry. Scien-tometrics, 22: 155–205.
Calver M.C., O'Brien P.A., Lilith M. (2012): Australasian Plant Pathology: an analysis of authorship and citations in the 21st century. Australasian Plant Pathology, 41: 179–187.
Choh Y., Sabelis M.W., Janssen A. (2015): Distribution and oviposition site selection by predatory mites in the presence of intraguild predators. Experimental and Applied Acarology, 67: 477–491.
Christiansen I., Szin S., Schausberger P. (2016): Benefit-cost trade-offs of early learning in foraging predatory mites Amblyseius swirskii. Scientific Reports, 6: 23571. doi: 10.1038/srep23571
Christiansen I., Schausberger P. (2017): Interference in early dual-task learning by predatory mites. Animal Behaviour, 133: 21–28.
Cobo M.J., López-Herrera A.G., Herrera-Viedma E., Herrera F. (2011): Science mapping soft-ware tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62: 1382–1402.
Coll M., Ridgway R.I. (1995): Functional and numerical responses of Orius insidiosus (Heterop-tera, Anthocoridae) to its prey in different vegetable crops. Annals of the Entomological Society of America, 88: 732–738.
De Nardo E.A.B., Hopper K.R. (2004): Using the literature to evaluate parasitoid host ranges: a case study of Macrocentrus grandii (Hymenoptera: Braconidae) introduced into North America to control Ostrinia nubilalis (Lepidoptera: Crambidae). Biological Control, 31: 280–295.
Ebssa L., Borgemeister C., Berndt O., Poehling H.M. (2001): Efficacy of entomopathogenic nematodes against soil-dwelling life stages of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Journal of Invertebrate Pathology, 78: 119–127.
Elimem M., Harbi A., Limem-Sellemi E., Ben Othmen S., Chermiti B. (2018): Orius laevigatus (Insecta; Heteroptera) local strain, a promising agent in biological control of Frankliniella occiden-talis (Insecta; Thysanoptra) in protected pepper crops in Tunisia. Euro-Mediterranean Journal fo Environmental Integration, 3: 5. doi: 10.1007/s41207-017-0040-y
Farazmand A., Fathipour Y., Kamali K. (2014): Cannibalism in Scolothrips longicornis (Thysa-noptera: Thripidae), Neoseiulus californicus and Typhlodromus bagdasarjani (Acari: Phytosei-idae). Systematic and Applied Acarology, 19: 471–480.
Funderburk J., Stavisky J., Olson S. (2000): Predation of Frankliniella occidentalis (Thysanoptera: Thripidae) in field peppers by Orius insidiosus (Hemiptera: Anthocoridae). Environmental Ento-mology, 29: 376–382.
Ghasemloo Z., Pakyari H., Arbab A. (2016): Cannibalism and intraguild predation in the phyto-seiid mites Phytoseiulus persimilis and Typhlodromus bagdasarjani (Acari: Phytoseiidae). Interna-tional Journal of Acarology, 42: 149–152.
Groves R.L., Walgenbach J.F., Moyer J.W., Kennedy G.G. (2003): Seasonal dispersal patterns of Frankliniella fusca (Thysanoptera: Thripidae) and tomato spotted wilt virus occurrence in central and eastern North Carolina. Journal of Economic Entomology, 96: 1–11.
Herrick N.J., Cloyd R.A. (2017): Direct and indirect effects of pesticides on the insidious flower bug (Hemiptera: Anthocoridae) under laboratory conditions. Journal of Economic Entomology, 110: 931–940.
Hernández-Rosas F., García-Pacheco L.A., García-Pacheco K.A., Figueroa-Sandoval B., Salin-as Ruiz J., Sangerman-Jarquín D., Díaz-Sánchez E.L. (2019): Analysis of research on Metarhizium anisopliae in the last 40 years. Revista Mexicana de Ciencias Agrícolas, 22: 155–166.
Hoddle M.S., Robinson L., Drescher K., Jones J. (2000): Developmental and reproductive biolo-gy of a predatory Franklinothrips n. sp (Thysanoptera: Aeolothripidae). Biological Control, 18: 27–38.
Hu C., Cao L.Z. (2018): Bibliometric and visual analysis of planthopper research between 1980 and 2017. Current Science, 114: 2445–2452.
Hussein M.A., El-Mahdi F.S. (2019) Efficiency of three formulated entomopathogenic nema-todes against onion thrips, Thrips tabaci under aquaculture system. Journal of Biopesticides, 12: 134–138
Janssens F., Leta J., Glänzel W., De Moor B. (2006): Towards mapping library and information science. Information Processing & Management, 42: 1614–1642.
Jensen S.E. (2000): Insecticides resistance in the western flowerthrips, Frankliniella occidentalis. Integrated Pest Management Reviews, 5: 131–146.
Kashkouli M., Khajehali J., Poorjavad N. (2014): Impact of entomopathogenic nematodes on Thrips tabaci Lindeman (Thysanoptera: Thripidae) life stages in the laboratory and under semi-field conditions. Journal of Biopesticides, 7: 77–84.
Khaliq A., Afzal M., Raza A.M., Kamran M., Khan A.A., Aqeel M.A., Ullah M.I., Khan B.S., Kanwal H. (2018): Suitability of Thrips tabaci L. (Thysonaptera: Thripidae) as prey for the phyto-seiid mite, Neoseiulus barkeri Hughes (Acari: Phytoseiidae). African Entomology, 26: 131–135.
Kiman Z.B., Yeargan K.V. (1985): Development and reproduction of the predator Orius insidio-sus (Hemiptera: Anthocoridae) reared on diets of selected plant material and arthropod prey. An-nals of the Entomological Society of America, 78: 464–467.
Kolle S., Shankarappa T.H., Manjunatha R.T.B., Muniyappa A. (2015): Scholarly communication in the International Journal of Pest Management: a bibliometric analysis from 2005 to 2014. Jour-nal of Agricultural & Food Information, 16: 301–314.
Lang A. (2003): Intraguild interference and biocontrol effects of generalist predators in a winter wheat field. Oecologia, 134: 144–153.
Lei G., Liu F., Liu P., Zhou Y., Jiao T., Dang Y.H. (2019): A bibliometric analysis of forensic entomology trends and perspectives worldwide over the last two decades (1998–2017). Forensic Science International, 295: 72–82.
Liu X., Reitz S.R., Lei Z., Wang H. (2019): Thermoregulatory response of Frankliniella occiden-talis (Pergande) (Thysanoptera: Thripidae) to infection by Beauveria bassiana, and its effect on survivorship and reproductive success. Science Report, 9: 13625. doi: 10.1038/s41598-019-49950-z
Loomans A.J.M. (2003): Parasitoids as Biological Control Agents of Thrips Pests. [Ph.D. Thesis]. Wageningen, Wageningen Universiteit: 208.
Mautino G.C., Bosco L., Tavella L. (2014): Impact of control strategies on Thrips tabaci and its predator Aeolothrips intermedius on onion crops. Phytoparasitica, 42: 41–52.
Mehle N., Trdan S. (2012): Traditional and modern methods for the identification of thrips (Thysanoptera) species. Journal of Pest Science, 85: 179–190.
Moritz G. (1994): Pictorial key to the economically important species of Thysanoptera in central Europe. EPPO Bulletin, 24: 181–208.
Morse J.G., Hoddle M.S. (2006): Invasion biology of thrips. Annual Review of Entomology, 51: 67–89.
Mound L.A., Morris D.C. (2007): The insect order Thysanoptera: classification versus systemat-ics. Zootaxa, 1668: 395–411.
Mound L.A. (2004): Australian Thysanoptera-biological diversity and a diversity of studies. Aus-tralian Journal of Entomology, 43: 248–257.
Mound L.A., Teulon D.A.J. (1995): Thysanoptera as phytophagous opportunists. In: Thrips Biol-ogy and Management. Parker B.L. (ed.): NATO ASI Series, 276. New York, Springer: 3–19.
Mound L.A., Kibby G. (1998): Thysanoptera – An Identification Guide. 2nd ed. Wallingford, CAB International
Murai T., Loomans A.J.M. (2001): Evaluation of an improved method for mass-rearing of thrips and a thrips parasitoid. Entomologia Experimentalis et Applicata, 101: 281–289.
Negloh K., Hanna R., Schausberger P. (2008): Comparative demography and diet breadth of Brazilian and African populations of the predatory mite Neoseiulus baraki, a candidate for biological control of coconut mite. Biological Control, 46: 523–531.
Oveja M.F., Riudavets J., Arnó J., Gabarra R. (2016): Does a supplemental food improve the effectiveness of predatory bugs on cucumber? BioControl, 61: 47–56.
Otieno J.A., Pallmann P., Poehling H. (2017): Additive and synergistic interactions amongst Ori-us laevigatus (Heteroptera: Anthocoridae), entomopathogens and azadirachtin for controlling western flower thrips (Thysanoptera: Thripidae). BioControl, 62: 85–95.
Pakyari H., Enkegaard A. (2012): Effect of different temperatures on consumption of two spot-ted mite, Tetranychus urticae, eggs by the predatory thrips, Scolothrips longicornis. Journal of Insect Science, 12: 98. doi: 10.1673/031.012.9801
Piazzol J., Nammour D., Hervouet P., Bout A., Desneux N., Mailleret L. (2010): Comparison of two methods of monitoring thrips populations in a greenhouse rose crop. Journal of Pest Sci-ence, 83: 191–196.
Pozzebon A., Boaria A., Duso C. (2015): Single and combined releases of biological control agents against canopy-and soil-dwelling stages of Frankliniella occidentalis in cyclamen. BioCon-trol, 60: 341–350.
Pritchard A. (1969): Statistical bibliography or bibliometrics? Journal of Documentation, 25: 348–349
Rotenberg D., Jacobson A.L., Schneweis D., Whitfield. A (2015): Thrips transmission of tospoviruses. Current Opinion in Virology, 15: 80–89.
Rothman H., Lester G (1985): The use of bibliometric indicators in the study of insecticide re-search. Scientometrics, 8: 247–262.
Salamanca J., Souza B., Rodriguez-Saona C. (2018): Cascading effects of combining synthetic herbivore-induced plant volatiles with companion plants to manipulate natural enemies in an agro-ecosystem. Pest Management Science, 74: 2133–2145.
San-Blas E. (2013): Progress on entomopathogenic nematology research: A bibliometric study of the last three decades: 1980–2010. Biological Control, 66: 102–124.
Sinha B. (2012): Global biopesticide research trends: A bibliometric assessment. Indian Journal of Agricultural Science, 82: 95–101
Song Z.W., Nguyen D.T., Li D.S., De Clercq P. (2019): Continuous rearing of the predatory mite Neoseiulus californicus on an artificial diet. BioControl, 64, 2: 125–137.
Stopar K., Mackiewicz-Talarczyk M., Bartol T. (2021): Cotton fiber in Web of Science and Sco-pus: mapping and visualization of research topics and publishing patterns. Journal of Natural Fi-bers, Online first: 1–12.
Trdan S., Valič N., Žežlina I., Bergant K., Žnidarčič D. (2005): Light blue sticky boards for mass trapping of onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), in onion crops: fact or fantasy? Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 112: 173–180.
Vaello T., Sarde S.J., Marcos-García M.Á., de Boer J.G., Pineda A. (2018): Modulation of plant-mediated interactions between herbivores of different feeding guilds: Effects of parasitism and belowground interactions. Science Report, 8: 14424. doi:10.1038/s41598-018-32131-9
van Eck N.J., Waltman L. (2010): Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84: 523–538.
van Eck N.J., Waltman L. (2011): Text mining and visualization using VOSviewer. ISSI Newslet-ter, 7: 50–54
van Eck N.J., Waltman L., Noyons E.C.M., Buter R.K. (2010): Automatic term identification for bibliometric mapping. Scientometrics, 82: 581–596.
van Lenteren J.C. (2012): The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl, 57: 1–20.
van Rijn P.C.J., Tanigoshi L.K. (1999): Pollen as food for the predatory mites Iphiseius degen-erans and Neoseiulus cucumeris (Acari: Phytoseiidae): dietary range and life history. Experi-mental and Applied Acarology, 23: 785–802.
van Rijn P.C.J., van Houten Y.M., Sabelis M.W. (2002): How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology, 83: 2664–2679.[2664:HPBFPF]2.0.CO;2
Waltman L., van Eck N.J., Noyons E.C.M. (2010): A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4: 629–635.
Wu S., He Z., Wang E., Xu X., Lei Z. (2017): Application of Beauveria bassiana and Neoseiulus barkeri for improved control of Frankliniella occidentalis in greenhouse cucumber. Crop Protec-tion, 96: 83–87.
Wu S., Tang L., Fang F., Li D., Yuan X., Zei L., Gao Y. (2018): Screening, efficacy and mecha-nisms of microbial control agents against sucking pest insects as thrips. Advances in Insect Physi-ology, 55: 199–217.
Xu X., Borgemeister C., Poehling H.M. (2006): Interactions in the biological control of western flower thrips Frankliniella occidentalis (Pergande) and two-spotted spider mite Tetranychus urti-cae Koch by the predatory bug Orius insidiosus Say on beans. Biological Control, 36: 57–64.
Zhao J., Guo X., Tan X., Desneux D., Zappala L., Zhang F., Wang S. (2017): Using Calendula officinalis as a floral resource to enhance aphid and thrips suppression by the flower bug Orius sauteri (Hemiptera: Anthocoridae). Pest Management Science, 73: 515–520.
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti