Thrips and natural enemies through text data mining and visualization

https://doi.org/10.17221/34/2020-PPSCitation:

Stopar K., Trdan S., Bartol T. (2021): Thrips and natural enemies through text data mining and visualisation. Plant Protect. Sci., 57: 47–58.

download PDF

Thrips can cause considerable economic damage. In order to reduce the use of agrochemicals research has also focused on different natural enemies. We used bibliometric mapping and visualization to understand the structure of this field. Articles from Web of Science as well as software Vosviewer were used. Analysis of co-occurrence of terms shows the principal research areas: transmission of viruses, chemical or biological control and new species. A third of articles refer to biological control. Visualizations reveal three major groups of beneficials: entomopathogens, parasitoids, and predators. Recently, attention has shifted mainly to predatory mites as biocontrol agents. Our analysis aims to make such information visually more explanatory with better overview of research directions.

References:
Ansari M.A., Brownbridge M., Shah F.A, Butt T.M. (2008): Efficacy of entomopathogenic fungi against soil-dwelling life stages of western flower thrips, Frankliniella occidentalis, in plant-growing media. Entomologia Experimentalis et Applicata, 127: 80–87.  https://doi.org/10.1111/j.1570-7458.2008.00674.x
 
Bielza P. (2008): Insecticide resistance management strategies against the western flower thrips, Frankliniella occidentalis. Pest Management Science, 64, : 1131–1138.  https://doi.org/10.1002/ps.1620
 
Bohinc T., Kreiter S., Tixier M.S., Vierbergen G., Trdan S. (2018): Predatory mites (Acari: Phyto-seiidae) first recorded on cultivated plants in Slovenia in the period 2012–2017. Acta Agricul-turae Slovenica, 111: 493–499. https://doi.org/10.14720/aas.2018.111.2.21
 
Börner K., Chen C., Boyack K. (2003): Visualizing knowledge domains. Annual Review of Information Science & Technology, 37: 179–255.
 
Bouagga S., Urbaneja A., Rambla J.L., Flors V., Granell A., Jaquesc J.A., Pérez-Hedo M. (2018a): Zoophytophagous mirids provide pest controlby inducing direct defences, antixenosis andattraction to parasitoids in sweet pepper plants. Pest Management Science, 74: 1286–1296.
 
Bouagga S., Urbaneja A., Pérez-Hedo M. (2018b): Combined use of predatory mirids with Am-blyseius swirskii (Acari: Phytoseiidae) to enhance pest management in sweet pepper. Journal of Economic Entomology, 111: 1112–1120.  https://doi.org/10.1093/jee/toy072
 
Broughton S., Herron G.A. (2009): Potential new insecticides for the control of western flower thrips (Thysanoptera: Thripidae) on sweet pepper, tomato, and lettuce. Journal of Economic En-tomology, 102: 646–651.  https://doi.org/10.1603/029.102.0224
 
Callon M., Courtial J.P., Turner W.A., Bauin S. (1983): From translations to problematic net-works: An introduction to co-word analysis. Social Science Information, 22: 191–235.  https://doi.org/10.1177/053901883022002003
 
Callon M., Courtial J.P., Laville F. (1991): Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemistry. Scien-tometrics, 22: 155–205.  https://doi.org/10.1007/BF02019280
 
Calver M.C., O'Brien P.A., Lilith M. (2012): Australasian Plant Pathology: an analysis of authorship and citations in the 21st century. Australasian Plant Pathology, 41: 179–187.  https://doi.org/10.1007/s13313-011-0106-2
 
Choh Y., Sabelis M.W., Janssen A. (2015): Distribution and oviposition site selection by predatory mites in the presence of intraguild predators. Experimental and Applied Acarology, 67: 477–491.  https://doi.org/10.1007/s10493-015-9970-8
 
Christiansen I., Szin S., Schausberger P. (2016): Benefit-cost trade-offs of early learning in foraging predatory mites Amblyseius swirskii. Scientific Reports, 6: 23571. doi: 10.1038/srep23571 https://doi.org/10.1038/srep23571
 
Christiansen I., Schausberger P. (2017): Interference in early dual-task learning by predatory mites. Animal Behaviour, 133: 21–28.  https://doi.org/10.1016/j.anbehav.2017.09.005
 
Cobo M.J., López-Herrera A.G., Herrera-Viedma E., Herrera F. (2011): Science mapping soft-ware tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62: 1382–1402. https://doi.org/10.1002/asi.21525
 
Coll M., Ridgway R.I. (1995): Functional and numerical responses of Orius insidiosus (Heterop-tera, Anthocoridae) to its prey in different vegetable crops. Annals of the Entomological Society of America, 88: 732–738.  https://doi.org/10.1093/aesa/88.6.732
 
De Nardo E.A.B., Hopper K.R. (2004): Using the literature to evaluate parasitoid host ranges: a case study of Macrocentrus grandii (Hymenoptera: Braconidae) introduced into North America to control Ostrinia nubilalis (Lepidoptera: Crambidae). Biological Control, 31: 280–295. https://doi.org/10.1016/j.biocontrol.2004.07.003
 
Ebssa L., Borgemeister C., Berndt O., Poehling H.M. (2001): Efficacy of entomopathogenic nematodes against soil-dwelling life stages of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Journal of Invertebrate Pathology, 78: 119–127. https://doi.org/10.1006/jipa.2001.5051
 
Elimem M., Harbi A., Limem-Sellemi E., Ben Othmen S., Chermiti B. (2018): Orius laevigatus (Insecta; Heteroptera) local strain, a promising agent in biological control of Frankliniella occiden-talis (Insecta; Thysanoptra) in protected pepper crops in Tunisia. Euro-Mediterranean Journal fo Environmental Integration, 3: 5. doi: 10.1007/s41207-017-0040-y https://doi.org/10.1007/s41207-017-0040-y
 
Farazmand A., Fathipour Y., Kamali K. (2014): Cannibalism in Scolothrips longicornis (Thysa-noptera: Thripidae), Neoseiulus californicus and Typhlodromus bagdasarjani (Acari: Phytosei-idae). Systematic and Applied Acarology, 19: 471–480. https://doi.org/10.11158/saa.19.4.10
 
Funderburk J., Stavisky J., Olson S. (2000): Predation of Frankliniella occidentalis (Thysanoptera: Thripidae) in field peppers by Orius insidiosus (Hemiptera: Anthocoridae). Environmental Ento-mology, 29: 376–382.  https://doi.org/10.1093/ee/29.2.376
 
Ghasemloo Z., Pakyari H., Arbab A. (2016): Cannibalism and intraguild predation in the phyto-seiid mites Phytoseiulus persimilis and Typhlodromus bagdasarjani (Acari: Phytoseiidae). Interna-tional Journal of Acarology, 42: 149–152.  https://doi.org/10.1080/01647954.2016.1141983
 
Groves R.L., Walgenbach J.F., Moyer J.W., Kennedy G.G. (2003): Seasonal dispersal patterns of Frankliniella fusca (Thysanoptera: Thripidae) and tomato spotted wilt virus occurrence in central and eastern North Carolina. Journal of Economic Entomology, 96: 1–11.  https://doi.org/10.1603/0022-0493-96.1.1
 
Herrick N.J., Cloyd R.A. (2017): Direct and indirect effects of pesticides on the insidious flower bug (Hemiptera: Anthocoridae) under laboratory conditions. Journal of Economic Entomology, 110: 931–940.  https://doi.org/10.1093/jee/tox093
 
Hernández-Rosas F., García-Pacheco L.A., García-Pacheco K.A., Figueroa-Sandoval B., Salin-as Ruiz J., Sangerman-Jarquín D., Díaz-Sánchez E.L. (2019): Analysis of research on Metarhizium anisopliae in the last 40 years. Revista Mexicana de Ciencias Agrícolas, 22: 155–166. https://doi.org/10.29312/remexca.v0i22.1866
 
Hoddle M.S., Robinson L., Drescher K., Jones J. (2000): Developmental and reproductive biolo-gy of a predatory Franklinothrips n. sp (Thysanoptera: Aeolothripidae). Biological Control, 18: 27–38. https://doi.org/10.1006/bcon.1999.0809
 
Hu C., Cao L.Z. (2018): Bibliometric and visual analysis of planthopper research between 1980 and 2017. Current Science, 114: 2445–2452.  https://doi.org/10.18520/cs/v114/i12/2445-2452
 
Hussein M.A., El-Mahdi F.S. (2019) Efficiency of three formulated entomopathogenic nema-todes against onion thrips, Thrips tabaci under aquaculture system. Journal of Biopesticides, 12: 134–138
 
Janssens F., Leta J., Glänzel W., De Moor B. (2006): Towards mapping library and information science. Information Processing & Management, 42: 1614–1642.
 
Jensen S.E. (2000): Insecticides resistance in the western flowerthrips, Frankliniella occidentalis. Integrated Pest Management Reviews, 5: 131–146.  https://doi.org/10.1023/A:1009600426262
 
Kashkouli M., Khajehali J., Poorjavad N. (2014): Impact of entomopathogenic nematodes on Thrips tabaci Lindeman (Thysanoptera: Thripidae) life stages in the laboratory and under semi-field conditions. Journal of Biopesticides, 7: 77–84.
 
Khaliq A., Afzal M., Raza A.M., Kamran M., Khan A.A., Aqeel M.A., Ullah M.I., Khan B.S., Kanwal H. (2018): Suitability of Thrips tabaci L. (Thysonaptera: Thripidae) as prey for the phyto-seiid mite, Neoseiulus barkeri Hughes (Acari: Phytoseiidae). African Entomology, 26: 131–135.  https://doi.org/10.4001/003.026.0131
 
Kiman Z.B., Yeargan K.V. (1985): Development and reproduction of the predator Orius insidio-sus (Hemiptera: Anthocoridae) reared on diets of selected plant material and arthropod prey. An-nals of the Entomological Society of America, 78: 464–467.  https://doi.org/10.1093/aesa/78.4.464
 
Kolle S., Shankarappa T.H., Manjunatha R.T.B., Muniyappa A. (2015): Scholarly communication in the International Journal of Pest Management: a bibliometric analysis from 2005 to 2014. Jour-nal of Agricultural & Food Information, 16: 301–314.
 
Lang A. (2003): Intraguild interference and biocontrol effects of generalist predators in a winter wheat field. Oecologia, 134: 144–153. https://doi.org/10.1007/s00442-002-1091-5
 
Lei G., Liu F., Liu P., Zhou Y., Jiao T., Dang Y.H. (2019): A bibliometric analysis of forensic entomology trends and perspectives worldwide over the last two decades (1998–2017). Forensic Science International, 295: 72–82.  https://doi.org/10.1016/j.forsciint.2018.12.002
 
Liu X., Reitz S.R., Lei Z., Wang H. (2019): Thermoregulatory response of Frankliniella occiden-talis (Pergande) (Thysanoptera: Thripidae) to infection by Beauveria bassiana, and its effect on survivorship and reproductive success. Science Report, 9: 13625. doi: 10.1038/s41598-019-49950-z https://doi.org/10.1038/s41598-019-49950-z
 
Loomans A.J.M. (2003): Parasitoids as Biological Control Agents of Thrips Pests. [Ph.D. Thesis]. Wageningen, Wageningen Universiteit: 208.
 
Mautino G.C., Bosco L., Tavella L. (2014): Impact of control strategies on Thrips tabaci and its predator Aeolothrips intermedius on onion crops. Phytoparasitica, 42: 41–52.  https://doi.org/10.1007/s12600-013-0335-8
 
Mehle N., Trdan S. (2012): Traditional and modern methods for the identification of thrips (Thysanoptera) species. Journal of Pest Science, 85: 179–190. https://doi.org/10.1007/s10340-012-0423-4
 
Moritz G. (1994): Pictorial key to the economically important species of Thysanoptera in central Europe. EPPO Bulletin, 24: 181–208.  https://doi.org/10.1111/j.1365-2338.1994.tb01060.x
 
Morse J.G., Hoddle M.S. (2006): Invasion biology of thrips. Annual Review of Entomology, 51: 67–89.  https://doi.org/10.1146/annurev.ento.51.110104.151044
 
Mound L.A., Morris D.C. (2007): The insect order Thysanoptera: classification versus systemat-ics. Zootaxa, 1668: 395–411.  https://doi.org/10.11646/zootaxa.1668.1.21
 
Mound L.A. (2004): Australian Thysanoptera-biological diversity and a diversity of studies. Aus-tralian Journal of Entomology, 43: 248–257. https://doi.org/10.1111/j.1326-6756.2004.00431.x
 
Mound L.A., Teulon D.A.J. (1995): Thysanoptera as phytophagous opportunists. In: Thrips Biol-ogy and Management. Parker B.L. (ed.): NATO ASI Series, 276. New York, Springer: 3–19.
 
Mound L.A., Kibby G. (1998): Thysanoptera – An Identification Guide. 2nd ed. Wallingford, CAB International
 
Murai T., Loomans A.J.M. (2001): Evaluation of an improved method for mass-rearing of thrips and a thrips parasitoid. Entomologia Experimentalis et Applicata, 101: 281–289.  https://doi.org/10.1046/j.1570-7458.2001.00913.x
 
Negloh K., Hanna R., Schausberger P. (2008): Comparative demography and diet breadth of Brazilian and African populations of the predatory mite Neoseiulus baraki, a candidate for biological control of coconut mite. Biological Control, 46: 523–531.  https://doi.org/10.1016/j.biocontrol.2008.04.022
 
Oveja M.F., Riudavets J., Arnó J., Gabarra R. (2016): Does a supplemental food improve the effectiveness of predatory bugs on cucumber? BioControl, 61: 47–56.
 
Otieno J.A., Pallmann P., Poehling H. (2017): Additive and synergistic interactions amongst Ori-us laevigatus (Heteroptera: Anthocoridae), entomopathogens and azadirachtin for controlling western flower thrips (Thysanoptera: Thripidae). BioControl, 62: 85–95.  https://doi.org/10.1007/s10526-016-9767-7
 
Pakyari H., Enkegaard A. (2012): Effect of different temperatures on consumption of two spot-ted mite, Tetranychus urticae, eggs by the predatory thrips, Scolothrips longicornis. Journal of Insect Science, 12: 98. doi: 10.1673/031.012.9801 https://doi.org/10.1673/031.012.9801
 
Piazzol J., Nammour D., Hervouet P., Bout A., Desneux N., Mailleret L. (2010): Comparison of two methods of monitoring thrips populations in a greenhouse rose crop. Journal of Pest Sci-ence, 83: 191–196.  https://doi.org/10.1007/s10340-010-0286-5
 
Pozzebon A., Boaria A., Duso C. (2015): Single and combined releases of biological control agents against canopy-and soil-dwelling stages of Frankliniella occidentalis in cyclamen. BioCon-trol, 60: 341–350.  https://doi.org/10.1007/s10526-014-9641-4
 
Pritchard A. (1969): Statistical bibliography or bibliometrics? Journal of Documentation, 25: 348–349
 
Rotenberg D., Jacobson A.L., Schneweis D., Whitfield. A (2015): Thrips transmission of tospoviruses. Current Opinion in Virology, 15: 80–89.  https://doi.org/10.1016/j.coviro.2015.08.003
 
Rothman H., Lester G (1985): The use of bibliometric indicators in the study of insecticide re-search. Scientometrics, 8: 247–262.  https://doi.org/10.1007/BF02016939
 
Salamanca J., Souza B., Rodriguez-Saona C. (2018): Cascading effects of combining synthetic herbivore-induced plant volatiles with companion plants to manipulate natural enemies in an agro-ecosystem. Pest Management Science, 74: 2133–2145.  https://doi.org/10.1002/ps.4910
 
San-Blas E. (2013): Progress on entomopathogenic nematology research: A bibliometric study of the last three decades: 1980–2010. Biological Control, 66: 102–124.  https://doi.org/10.1016/j.biocontrol.2013.04.002
 
Sinha B. (2012): Global biopesticide research trends: A bibliometric assessment. Indian Journal of Agricultural Science, 82: 95–101
 
Song Z.W., Nguyen D.T., Li D.S., De Clercq P. (2019): Continuous rearing of the predatory mite Neoseiulus californicus on an artificial diet. BioControl, 64, 2: 125–137. https://doi.org/10.1007/s10526-019-09923-7
 
Stopar K., Mackiewicz-Talarczyk M., Bartol T. (2021): Cotton fiber in Web of Science and Sco-pus: mapping and visualization of research topics and publishing patterns. Journal of Natural Fi-bers, Online first: 1–12.
 
Trdan S., Valič N., Žežlina I., Bergant K., Žnidarčič D. (2005): Light blue sticky boards for mass trapping of onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), in onion crops: fact or fantasy? Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 112: 173–180.
 
Vaello T., Sarde S.J., Marcos-García M.Á., de Boer J.G., Pineda A. (2018): Modulation of plant-mediated interactions between herbivores of different feeding guilds: Effects of parasitism and belowground interactions. Science Report, 8: 14424. doi:10.1038/s41598-018-32131-9 https://doi.org/10.1038/s41598-018-32131-9
 
van Eck N.J., Waltman L. (2010): Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84: 523–538.  https://doi.org/10.1007/s11192-009-0146-3
 
van Eck N.J., Waltman L. (2011): Text mining and visualization using VOSviewer. ISSI Newslet-ter, 7: 50–54
 
van Eck N.J., Waltman L., Noyons E.C.M., Buter R.K. (2010): Automatic term identification for bibliometric mapping. Scientometrics, 82: 581–596.  https://doi.org/10.1007/s11192-010-0173-0
 
van Lenteren J.C. (2012): The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. BioControl, 57: 1–20.  https://doi.org/10.1007/s10526-011-9395-1
 
van Rijn P.C.J., Tanigoshi L.K. (1999): Pollen as food for the predatory mites Iphiseius degen-erans and Neoseiulus cucumeris (Acari: Phytoseiidae): dietary range and life history. Experi-mental and Applied Acarology, 23: 785–802. https://doi.org/10.1023/A:1006227704122
 
van Rijn P.C.J., van Houten Y.M., Sabelis M.W. (2002): How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology, 83: 2664–2679. https://doi.org/10.1890/0012-9658(2002)083[2664:HPBFPF]2.0.CO;2
 
Waltman L., van Eck N.J., Noyons E.C.M. (2010): A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4: 629–635.  https://doi.org/10.1016/j.joi.2010.07.002
 
Wu S., He Z., Wang E., Xu X., Lei Z. (2017): Application of Beauveria bassiana and Neoseiulus barkeri for improved control of Frankliniella occidentalis in greenhouse cucumber. Crop Protec-tion, 96: 83–87.  https://doi.org/10.1016/j.cropro.2017.01.013
 
Wu S., Tang L., Fang F., Li D., Yuan X., Zei L., Gao Y. (2018): Screening, efficacy and mecha-nisms of microbial control agents against sucking pest insects as thrips. Advances in Insect Physi-ology, 55: 199–217.
 
Xu X., Borgemeister C., Poehling H.M. (2006): Interactions in the biological control of western flower thrips Frankliniella occidentalis (Pergande) and two-spotted spider mite Tetranychus urti-cae Koch by the predatory bug Orius insidiosus Say on beans. Biological Control, 36: 57–64.  https://doi.org/10.1016/j.biocontrol.2005.07.019
 
Zhao J., Guo X., Tan X., Desneux D., Zappala L., Zhang F., Wang S. (2017): Using Calendula officinalis as a floral resource to enhance aphid and thrips suppression by the flower bug Orius sauteri (Hemiptera: Anthocoridae). Pest Management Science, 73: 515–520. https://doi.org/10.1002/ps.4474
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti