Berrie A.M., Holb I. (2014): Brown rot diseases. In: Sutton T.B., Aldwinckle H.S., Angelo A.M., Walgenbach J.F. (eds): Compendium of Apple and Pear Diseases and Pests. St. Paul, American Phytopathological Society: 43–45.
Côté M.J., Tardif M.C., Meldrum A.J. (2004): Identification of Monilinia fructigena, M. fruc-ticola, M. laxa, and Monilia polystroma on inoculated and naturally infected fruit using mul-tiplex PCR. Plant Disease, 88: 1219–1225.
https://doi.org/10.1094/PDIS.2004.88.11.1219
De Cal A., Eguen B., Melgarejo P. (2014): Vegetative compatibility groups and sexual repro-duction among Spanish Monilinia fructicola isolates obtained from peach and nectarine or-chards, but not Monilinia laxa. Fungal Biology, 118: 484–494.
https://doi.org/10.1016/j.funbio.2014.03.007
EFSA (2011): Pest risk assessment of Monilinia fructicola for the EU territory and identifica-tion and evaluation of risk management options. EFSA Journal, 9: 155. doi:10.2903/j.efsa.2011.2119
https://doi.org/10.2903/j.efsa.2011.2119
Fan J.Y., Luo Y., Michailides TJ., Guo L.Y. (2014): Simultaneous quantification of alleles E198A and H6Y in the b-tubulin gene conferring benzimidazole resistance in Monilinia fruc-ticola using a duplex real-time (TaqMan) PCR. Pest Management Science, 70: 245–251.
https://doi.org/10.1002/ps.3549
Fan J.Y., Guo L.Y., Xu J.P., Luo Y., Michailides T.J. (2010): Genetic diversity of populations of Monilinia fructicola (Fungi, Ascomycota, Helotiales) from China. Journal of Eukaryotic Microbiology, 57: 206–212.
https://doi.org/10.1111/j.1550-7408.2009.00467.x
Fazekas M., Madar A., Sipiczki M., Miklos I., Imre H. (2014): Genetic diversity in Monilinia laxa populations in stone fruit species in Hungary. World Journal of Microbiology and Bio-technology, 30: 1879–1892.
https://doi.org/10.1007/s11274-014-1613-4
Ganopoulos I., Madesis P., Zambounis Α., Tsaftaris A. (2012): High resolution melting (HRM) analysis allowed fast and accurate closed-tube genotyping of Fusarium oxysporum formae speciales complex. FEMS Microbiology Letters, 334: 16–21.
https://doi.org/10.1111/j.1574-6968.2012.02610.x
Garganese F., Ippolito A., di Rienzo V., Lotti C., Montemurro C., Sanzani S.M. (2018): A new high-resolution melting assay for genotyping Alternaria species causing citrus brown spot. Journal of the Science of Food and Agriculture, 98: 4578–4583.
https://doi.org/10.1002/jsfa.8986
Gell I., Cubero J., Melgarejo P. (2007a): Two different PCR approaches for universal diagno-sis of brown rot and identification of Monilinia spp. in stone fruit trees. Journal of Applied Microbiology, 103: 2629–2637.
https://doi.org/10.1111/j.1365-2672.2007.03495.x
Gell I., Larena I., Melgarejo P. (2007b): Genetic diversity of Monilinia laxa populations in peach orchards in Spain. Journal of Phytopathology, 155: 549–556.
Gril T., Celar F., Munda A., Javornik B., Jakse J. (2008): AFLP analysis of interspecific varia-tion between Monilinia laxa isolates from different hosts. Plant Disease, 92: 1616–1624.
https://doi.org/10.1094/PDIS-92-12-1616
Guinet C., Fourrier-Jeandel C., Cerf-Wendling I., Ioos R. (2016): One-step detection of Mo-nilinia fructicola, M. fructigena, and M. laxa on Prunus and Malus by a multiplex real-time PCR assay. Plant Disease, 100: 2465–2474.
https://doi.org/10.1094/PDIS-05-16-0655-RE
Hewson K., Noormohammadi A.H., Devlin J.M., Mardani K., Ignjatovic J. (2009): Rapid detection and non-subjective characterization of infectious bronchitis virus isolates using high-resolution melt curve analysis and a mathematical model. Archives of Virology, 154: 649–660.
https://doi.org/10.1007/s00705-009-0357-1
Hily J.M., Singer S.D., Villani S.M., Cox K.D. (2011): Characterization of the cytochrome b (cytb) gene from Monilinia species causing brown rot of stone and pome fruit and its signifi-cance in the development of QoI resistance. Pest Management Science, 67: 385–396.
https://doi.org/10.1002/ps.2074
Hrustić J., Delibašić G., Stanković I., Grahovac M., Krstić B., Bulajić A., Tanović B. (2015): Monilinia species causing brown rot of stone fruit in Serbia. Plant Disease, 99: 709–717.
https://doi.org/10.1094/PDIS-07-14-0732-RE
Hrustić J., Mihajlović M., Tanović B., Delibašić G., Stanković I., Krstić B., Bulajić A. (2013): First report of brown rot caused by Monilinia fructicola on nectarine in Serbia. Plant Disease, 97: 147. doi: 10.1094/PDIS-08-12-0718-PDN
https://doi.org/10.1094/PDIS-08-12-0718-PDN
Hu M.J., Cox K.D., Schnabel G., Luo C.X. (2011): Monilinia species causing brown rot of peach in China. PLoS ONE, 6:e24990. doi: 10.1371/journal.pone.0024990
https://doi.org/10.1371/journal.pone.0024990
Ioos R., Frey P. (2000): Genomic variation within Monilinia laxa, M. fructigena and M. fructi-cola, and application to species identification by PCR. European Journal of Plant Pathology, 106: 373–378.
https://doi.org/10.1023/A:1008798520882
Jänsch M., Frey J.E., Hilber-Bodmer M., Broggini G.A.L., Weger J., Schnabel G., Patocchi A. (2012): SSR marker analysis of Monilinia fructicola from Swiss apricots suggests introduc-tion of the pathogen from neighboring countries and the United States. Plant Pathology, 61: 247–254.
https://doi.org/10.1111/j.1365-3059.2011.02511.x
Lane C.R. (2002): A synoptic key for differentiation of Monilinia fructicola, M. fructigena and M. laxa, based on examination of cultural characters.Bulletin OEPP/EPPO Bulletin, 32: 489–493.
https://doi.org/10.1046/j.1365-2338.2002.00595.x
Lu F., Lipka A.E., Glaubitz J., Elshire R., Cherney J.H., Casler M.D., Buckler E.S., Costich D.E. (2013): Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genetics, 9: e1003215. doi: 10.1371/journal.pgen.1003215
https://doi.org/10.1371/journal.pgen.1003215
Martini C., Mari M. (2014): Monilinia fructicola, Monilinia laxa (Monilinia rot, Brown rot). In: Bautista-Baños S. (ed.): Postharvest Decay-control Strategies. Cambridge, Academic Press.
Miessner S., Stammler G. (2010): Monilinia laxa, M. fructigena and M. fructicola: Risk estima-tion of resistance to QoI fungicides and identification of species with cytochrome b gene sequences. Journal of Plant Diseases and Protection, 117: 162–167.
https://doi.org/10.1007/BF03356354
Ortega SF., López M.P.B., Nari L., Boonham N., Gullino M.L, Spadaro D. (2019): Rapid detection of Monilinia fructicola and Monilinia laxa on peaches and nectarines using loop-mediated isothermal amplification. Plant Disease, 103: 2305–2314.
https://doi.org/10.1094/PDIS-01-19-0035-RE
Papavasileiou A., Madesis P., Karaoglanidis G. (2016): Identification and differentiation of Monilinia species causing brown rot of pome and stone fruit using high resolution melting (HRM) analysis. Phytopathology, 106: 1055–1064.
https://doi.org/10.1094/PHYTO-01-16-0016-R
Peakall R., Smouse P.E. (2012): GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28: 2537–2539.
https://doi.org/10.1093/bioinformatics/bts460
Sillo F., Giordano L., Zampieri E., Lione G., De Cesare S. Gonthier P. (2017): HRM analysis provides insights on the reproduction mode and the population structure of Gnomoniopsis castaneae in Europe. Plant Pathology, 66: 293–303.
https://doi.org/10.1111/ppa.12571
Stukenbrock E.H. (2016): The role of hybridization in the evolution and emergence of new fungal plant pathogens. Phytopathology, 106: 104–112.
https://doi.org/10.1094/PHYTO-08-15-0184-RVW
Tran T.T., Li H., Nguyen D.Q., Sivasithamparam K., Jones M.G.K., Wylie S.J. (2019): Geno-typic structure of Monilinia populations in Western Australia two decades after incursion. Australasian Plant Pathology, 48: 167–178.
https://doi.org/10.1007/s13313-019-0612-1
van Brouwershaven I.R., Bruil M.L., van Leeuwen G.C.M., Kox L.F.F. (2010): A real-time (TaqMan) PCR assay to differentiate Monilinia fructicola from other brown rot fungi of fruit crops. Plant Pathology, 59: 548–555.
https://doi.org/10.1111/j.1365-3059.2009.02220.x
Vasić M., Duduk N., Ivanović M.M., Obradović A., Ivanović M.S. (2012): First report of brown rot caused by Monilinia fructicola on stored apple in Serbia. Plant Disease, 96: 456.
https://doi.org/10.1094/PDIS-06-11-0531
Villarino M., Egüen B., Lamarca N., Segarra J., Usall J., Melgarejo P., De Cal A. (2013): Oc-currence of Monilinia laxa and M. fructigena after introduction of M. fructicola in peach or-chards in Spain. European Journal of Plant Pathology, 137: 835–845.
https://doi.org/10.1007/s10658-013-0292-6
Villarino M., Larena I., Martinez F., Melgarejo P., De Cal A. (2012): Analysis of genetic di-versity in Monilinia fructicola from Ebro valley in Spain using ISSR and RAPD markers. Eu-ropean Journal of Plant Pathology, 132: 511–524.
https://doi.org/10.1007/s10658-011-9895-y
Vossen R.H., Aten E., Roos A., den Dunnen J.T. (2009): High-resolution melting analysis (HRMA) – more than just sequence variant screening. Human Mutation: 30, 860–866.
https://doi.org/10.1002/humu.21019
Wang J.R., Guo L.Y., Xiao C.L., Zhi X. (2018): Detection and identification of six Monilinia spp. causing brown rot using TaqMan real-time PCR from pure cultures and infected apple fruit. Plant Disease, 102: 1527–1533.
https://doi.org/10.1094/PDIS-10-17-1662-RE
Xanthopoulou A., Ganopoulos I., Tryfinopoulou P., Panagou E.Z., Osanthanunkul M., Madesis P., Kizis D. (2019): Rapid and accurate identification of black aspergilli from grapes using high-resolution melting (HRM) analysis. Journal of the Science of Food and Agriculture, 99: 309–314.
https://doi.org/10.1002/jsfa.9189
Zambounis A., Samaras A., Xanthopoulou A., Osathanunkul M., Schena L., Tsaftaris A., Madesis P. (2016a): Identification of Phytophthora species by a high resolution melting analysis: an innovative tool for rapid differentiation. Plant Protection Science, 52: 176–181.
Zambounis A., Xanthopoulou A., Madesis P., Tsaftaris A., Vannini A., Bruni N., Tomassini A., Chilosi G., Vettraino A.M. (2016b): HRM: a tool to assess genetic diversity of Phy-tophthora cambivora isolates. Journal of Plant Pathology, 98: 611–616.
Zambounis A., Xanthopoulou A., Karaoglanidis G., Tsaftaris A., Madesis P. (2015a): A new accurate genotyping HRM method for Alternaria species related to fruit rot diseases of ap-ple and pomegranate. International Journal of Phytopathology, 4: 159–165.
Zambounis A., Ganopoulos I., Chatzidimopoulos M., Tsaftaris A., Madesis P. (2015b): High-resolution melting approaches towards plant fungal molecular diagnostics. Phytoparasitica, 43: 265–272.
Zhu X.Q., Chen X.Y., Guo L.Y. (2011): Population structure of brown rot fungi on stone fruits in China. Plant Disease, 95: 1284–1291.
https://doi.org/10.1094/PDIS-02-11-0079