Genotypic differentiation of Monilinia spp. populations in Serbia using a high-resolution melting (HRM) analysis

Zambounis A., Stefanidou E., Madesis P., Hrustić J., Mihajlović M., Tanović B. (2021): Genotypic differentiation of Monilinia spp. populations in Serbia using a high-resolution melting (HRM) analysis. Plant Protect. Sci., 57: 38–46.

supplementary materialdownload PDF

Monilinia laxa, Monilinia fructicola and Monilinia fructigena are the three main causal agents of brown rot, which is one of the most important diseases of stone fruits in pre- and postharvest conditions. Nowadays, the need for the precise genotyping of these Monilinia species in terms of the genetic diversity of their populations or differences in their pathogenicity and host range is a prerequisite for any efficient disease management. In our study, the genetic structure of Monilinia populations in Serbia from three geographically distinct regions was investigated employing
a high-resolution melting (HRM) analysis which is a sensitive and rapid molecular approach in fungal ge­notyping and diagnostics. Using species-specific primer pairs genotype-specific HRM melting curve profiles were generated allowing to efficiently decipher the genetic diversity of the Monilinia populations. The Monilinia genotypes could be easily distinguished according to their melting curves. The isolates from the northern region were assigned to distinct genotypes and grouped rather independently compared to the isolates of the other two regions among all three tested Monilinia spp. M. fructicola and M. fructigena showed a higher genetic diversity among their populations (44%) compared with the genetic diversity among the M. laxa populations (7%). In contrast, the genetic variance within the pathogen populations was higher in the case of M. laxa (93%). Our data revealed an absence of host specificity in the Monilinia spp. populations.

Berrie A.M., Holb I. (2014): Brown rot diseases. In: Sutton T.B., Aldwinckle H.S., Angelo A.M., Walgenbach J.F. (eds): Compendium of Apple and Pear Diseases and Pests. St. Paul, American Phytopathological Society: 43–45.
Côté M.J., Tardif M.C., Meldrum A.J. (2004): Identification of Monilinia fructigena, M. fruc-ticola, M. laxa, and Monilia polystroma on inoculated and naturally infected fruit using mul-tiplex PCR. Plant Disease, 88: 1219–1225.
De Cal A., Eguen B., Melgarejo P. (2014): Vegetative compatibility groups and sexual repro-duction among Spanish Monilinia fructicola isolates obtained from peach and nectarine or-chards, but not Monilinia laxa. Fungal Biology, 118: 484–494.
EFSA (2011): Pest risk assessment of Monilinia fructicola for the EU territory and identifica-tion and evaluation of risk management options. EFSA Journal, 9: 155. doi:10.2903/j.efsa.2011.2119
Fan J.Y., Luo Y., Michailides TJ., Guo L.Y. (2014): Simultaneous quantification of alleles E198A and H6Y in the b-tubulin gene conferring benzimidazole resistance in Monilinia fruc-ticola using a duplex real-time (TaqMan) PCR. Pest Management Science, 70: 245–251.
Fan J.Y., Guo L.Y., Xu J.P., Luo Y., Michailides T.J. (2010): Genetic diversity of populations of Monilinia fructicola (Fungi, Ascomycota, Helotiales) from China. Journal of Eukaryotic Microbiology, 57: 206–212.
Fazekas M., Madar A., Sipiczki M., Miklos I., Imre H. (2014): Genetic diversity in Monilinia laxa populations in stone fruit species in Hungary. World Journal of Microbiology and Bio-technology, 30: 1879–1892.
Ganopoulos I., Madesis P., Zambounis Α., Tsaftaris A. (2012): High resolution melting (HRM) analysis allowed fast and accurate closed-tube genotyping of Fusarium oxysporum formae speciales complex. FEMS Microbiology Letters, 334: 16–21.
Garganese F., Ippolito A., di Rienzo V., Lotti C., Montemurro C., Sanzani S.M. (2018): A new high-resolution melting assay for genotyping Alternaria species causing citrus brown spot. Journal of the Science of Food and Agriculture, 98: 4578–4583.
Gell I., Cubero J., Melgarejo P. (2007a): Two different PCR approaches for universal diagno-sis of brown rot and identification of Monilinia spp. in stone fruit trees. Journal of Applied Microbiology, 103: 2629–2637.
Gell I., Larena I., Melgarejo P. (2007b): Genetic diversity of Monilinia laxa populations in peach orchards in Spain. Journal of Phytopathology, 155: 549–556.
Gril T., Celar F., Munda A., Javornik B., Jakse J. (2008): AFLP analysis of interspecific varia-tion between Monilinia laxa isolates from different hosts. Plant Disease, 92: 1616–1624.
Guinet C., Fourrier-Jeandel C., Cerf-Wendling I., Ioos R. (2016): One-step detection of Mo-nilinia fructicola, M. fructigena, and M. laxa on Prunus and Malus by a multiplex real-time PCR assay. Plant Disease, 100: 2465–2474.
Hewson K., Noormohammadi A.H., Devlin J.M., Mardani K., Ignjatovic J. (2009): Rapid detection and non-subjective characterization of infectious bronchitis virus isolates using high-resolution melt curve analysis and a mathematical model. Archives of Virology, 154: 649–660.
Hily J.M., Singer S.D., Villani S.M., Cox K.D. (2011): Characterization of the cytochrome b (cytb) gene from Monilinia species causing brown rot of stone and pome fruit and its signifi-cance in the development of QoI resistance. Pest Management Science, 67: 385–396.
Hrustić J., Delibašić G., Stanković I., Grahovac M., Krstić B., Bulajić A., Tanović B. (2015): Monilinia species causing brown rot of stone fruit in Serbia. Plant Disease, 99: 709–717.
Hrustić J., Mihajlović M., Tanović B., Delibašić G., Stanković I., Krstić B., Bulajić A. (2013): First report of brown rot caused by Monilinia fructicola on nectarine in Serbia. Plant Disease, 97: 147. doi: 10.1094/PDIS-08-12-0718-PDN
Hu M.J., Cox K.D., Schnabel G., Luo C.X. (2011): Monilinia species causing brown rot of peach in China. PLoS ONE, 6:e24990. doi: 10.1371/journal.pone.0024990
Ioos R., Frey P. (2000): Genomic variation within Monilinia laxa, M. fructigena and M. fructi-cola, and application to species identification by PCR. European Journal of Plant Pathology, 106: 373–378.
Jänsch M., Frey J.E., Hilber-Bodmer M., Broggini G.A.L., Weger J., Schnabel G., Patocchi A. (2012): SSR marker analysis of Monilinia fructicola from Swiss apricots suggests introduc-tion of the pathogen from neighboring countries and the United States. Plant Pathology, 61: 247–254.
Lane C.R. (2002): A synoptic key for differentiation of Monilinia fructicola, M. fructigena and M. laxa, based on examination of cultural characters.Bulletin OEPP/EPPO Bulletin, 32: 489–493.
Lu F., Lipka A.E., Glaubitz J., Elshire R., Cherney J.H., Casler M.D., Buckler E.S., Costich D.E. (2013): Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genetics, 9: e1003215. doi: 10.1371/journal.pgen.1003215
Martini C., Mari M. (2014): Monilinia fructicola, Monilinia laxa (Monilinia rot, Brown rot). In: Bautista-Baños S. (ed.): Postharvest Decay-control Strategies. Cambridge, Academic Press.
Miessner S., Stammler G. (2010): Monilinia laxa, M. fructigena and M. fructicola: Risk estima-tion of resistance to QoI fungicides and identification of species with cytochrome b gene sequences. Journal of Plant Diseases and Protection, 117: 162–167.
Ortega SF., López M.P.B., Nari L., Boonham N., Gullino M.L, Spadaro D. (2019): Rapid detection of Monilinia fructicola and Monilinia laxa on peaches and nectarines using loop-mediated isothermal amplification. Plant Disease, 103: 2305–2314.
Papavasileiou A., Madesis P., Karaoglanidis G. (2016): Identification and differentiation of Monilinia species causing brown rot of pome and stone fruit using high resolution melting (HRM) analysis. Phytopathology, 106: 1055–1064.
Peakall R., Smouse P.E. (2012): GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28: 2537–2539.
Sillo F., Giordano L., Zampieri E., Lione G., De Cesare S. Gonthier P. (2017): HRM analysis provides insights on the reproduction mode and the population structure of Gnomoniopsis castaneae in Europe. Plant Pathology, 66: 293–303.
Stukenbrock E.H. (2016): The role of hybridization in the evolution and emergence of new fungal plant pathogens. Phytopathology, 106: 104–112.
Tran T.T., Li H., Nguyen D.Q., Sivasithamparam K., Jones M.G.K., Wylie S.J. (2019): Geno-typic structure of Monilinia populations in Western Australia two decades after incursion. Australasian Plant Pathology, 48: 167–178.
van Brouwershaven I.R., Bruil M.L., van Leeuwen G.C.M., Kox L.F.F. (2010): A real-time (TaqMan) PCR assay to differentiate Monilinia fructicola from other brown rot fungi of fruit crops. Plant Pathology, 59: 548–555.
Vasić M., Duduk N., Ivanović M.M., Obradović A., Ivanović M.S. (2012): First report of brown rot caused by Monilinia fructicola on stored apple in Serbia. Plant Disease, 96: 456.
Villarino M., Egüen B., Lamarca N., Segarra J., Usall J., Melgarejo P., De Cal A. (2013): Oc-currence of Monilinia laxa and M. fructigena after introduction of M. fructicola in peach or-chards in Spain. European Journal of Plant Pathology, 137: 835–845.
Villarino M., Larena I., Martinez F., Melgarejo P., De Cal A. (2012): Analysis of genetic di-versity in Monilinia fructicola from Ebro valley in Spain using ISSR and RAPD markers. Eu-ropean Journal of Plant Pathology, 132: 511–524.
Vossen R.H., Aten E., Roos A., den Dunnen J.T. (2009): High-resolution melting analysis (HRMA) – more than just sequence variant screening. Human Mutation: 30, 860–866.
Wang J.R., Guo L.Y., Xiao C.L., Zhi X. (2018): Detection and identification of six Monilinia spp. causing brown rot using TaqMan real-time PCR from pure cultures and infected apple fruit. Plant Disease, 102: 1527–1533.
Xanthopoulou A., Ganopoulos I., Tryfinopoulou P., Panagou E.Z., Osanthanunkul M., Madesis P., Kizis D. (2019): Rapid and accurate identification of black aspergilli from grapes using high-resolution melting (HRM) analysis. Journal of the Science of Food and Agriculture, 99: 309–314.
Zambounis A., Samaras A., Xanthopoulou A., Osathanunkul M., Schena L., Tsaftaris A., Madesis P. (2016a): Identification of Phytophthora species by a high resolution melting analysis: an innovative tool for rapid differentiation. Plant Protection Science, 52: 176–181.
Zambounis A., Xanthopoulou A., Madesis P., Tsaftaris A., Vannini A., Bruni N., Tomassini A., Chilosi G., Vettraino A.M. (2016b): HRM: a tool to assess genetic diversity of Phy-tophthora cambivora isolates. Journal of Plant Pathology, 98: 611–616.
Zambounis A., Xanthopoulou A., Karaoglanidis G., Tsaftaris A., Madesis P. (2015a): A new accurate genotyping HRM method for Alternaria species related to fruit rot diseases of ap-ple and pomegranate. International Journal of Phytopathology, 4: 159–165.
Zambounis A., Ganopoulos I., Chatzidimopoulos M., Tsaftaris A., Madesis P. (2015b): High-resolution melting approaches towards plant fungal molecular diagnostics. Phytoparasitica, 43: 265–272.
Zhu X.Q., Chen X.Y., Guo L.Y. (2011): Population structure of brown rot fungi on stone fruits in China. Plant Disease, 95: 1284–1291.
supplementary materialdownload PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti