Role of nanoparticles in management of plant pathogens and scope in plant transgenics for imparting disease resistance

Hamid A., Saleem S. (2022): Role of nanoparticles in management of plant pathogens and scope in plant transgenics for imparting disease resistance. Plant Protect. Sci., 58: 173–184.

download PDF

Current efforts are focused on the search for efficient methods of pathogen management that will not result in damage to the environment or cause an imbalance in the existing biota. One of the strategies for this is the use of nanoparticles in agriculture for disease management. This review presents a summative view on the various applications of nanoparticles in conferring disease resistance to crops and the possibility of using nanoparticles as carriers of genetic material for the generation of disease resistant crops. Nanoparticles are directly being used for the control of pathogens. Nanoparticles have been used as antiviral, antifungal and antibacterial agents. The nano-encapsulation of pesticides in controlled release matrices is one of the most promising research areas for the future. Nano-encapsulation has been shown to increase the efficiency of pesticides, reduce their volatilisation and decrease the toxicity and environmental contamination in crops. Nano-encapsulated agrochemicals or biomolecules can be engineered to be released in a controlled manner and in a target-specific location. Nanoparticles also have great scope in the field of transgenics vis-à-vis pathogen resistance. The field of agriculture can be revolutionised by the use of nanoparticles for imparting disease resistance in crops. The field is so versatile that the possibilities are endless.

Abdelkhalek A., Al-Askar A.A. (2020): Green synthesized ZnO nanoparticles mediated by Mentha spicata extract induce plant systemic resistence against Tobacco mosaic virus. Applied Sciences, 10: 5054. doi: 10.3390/app10155054
Akamatsu K., Kaneko D., Sugawara T., Kikuchi R., Nakao S.I. (2010): Three preparation methods for monodispersed chitosan microspheres using the shirasu porous glass membrane emulsification technique and mechanisms of microsphere formation. Industrial and Engineering Chemistry Research, 49: 3236–3241.
Alkubaisi N.A.O., Aref N.M.M.A., Hendi A.A. (2015): Method of inhibiting plant virus using gold nanoparticles. US Patent No. 9198434B1, December 1, 2015.
Azam A., Ahmed A.S., Oves M., Khan M., Memic A. (2012): Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. International Journal of Nanomedicine, 7: 3527–3535.
Bautista-Baños S., Hernandez-Lauzardo A.N., Velazquez-Del Valle M.G., Hernández-López M., Barka E.A., Bosquez-Molina E., Wilson C. (2006): Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Protection, 25:108–118.
Behlke M.A. (2006): Progress towards in vivo use of siRNAs. Molecular Therapy, 13: 644–670.
Bhat S.S., Qurashi A., Khanday F.A. (2017): ZnO nanostructures based biosensors for cancer and infectious disease applications: Perspectives, prospects and promises. TrAC Trends in Analytical Chemistry, 86: 1–13.
Bhattacharya R., Mukherjee P. (2008): Biological properties of “naked” metal nanoparticles. Advanced Drug Delivery Reviews, 60: 1289–1306.
Bouwmeester H., Dekkers S., Noordam M.Y., Hagens W.I., Bulder A.S., De Heer C., Ten Voorde S.E., Wijnhoven S.W., Marvin H.J., Sips A.J. (2009): Review of health safety aspects of nanotechnologies in food production. Regulatory Toxicology and Pharmacology, 53: 52–62.
Bowman M.C., Ballard T.E., Ackerson C.J., Feldheim D.L., Margolis D.M., Melander C. (2008): Inhibition of HIV fusion with multivalent gold nanoparticles. Journal of the American Chemical Society, 130: 6896–6897.
Bryaskova R., Pencheva D., Nikolov S., Kantardjiev T. (2011): Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP). Journal of Chemical Biology, 4: 185–191.
Cai L., Liu C., Fan G., Liu C., Sun X. (2019): Preventing viral disease by ZnONPs through directly deactivating TMV and activating plant immunity in Nicothiana benthamiana. Environmental Science: Nano, 6: 3653–3669.
Chirkov S. (2002): The antiviral activity of chitosan (review). Applied Biochemistry and Microbiology, 38: 1–8.
Christou P., McCabe D.E., Swain W.F. (1988): Stable transformation of soybean callus by DNA-coated gold particles. Plant Physiology, 87: 671–674.
Cota-Arriola O., Cortez-Rocha M.O., Rosas-Burgos E.C., Burgos-Hernández A., López-Franco Y.L., Plascencia-Jatomea M. (2011): Antifungal effect of chitosan on the growth of Aspergillus parasiticus and production of aflatoxin B1. Polymer International, 60: 937–944.
Daniel M.C., Astruc D. (2004): Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104: 293–346.
Davis M.E., Shin D.M. (2008): Nanoparticle therapeutics: An emerging treatment modality for cancer. Nature Reviews Drug Discovery, 7: 771–782.
De M., Ghosh P.S., Rotello V.M. (2008): Applications of nanoparticles in biology. Advanced Materials, 20: 4225–4241.
Derfus A.M., Chen A.A., Min D.H., Ruoslahti E., Bhatia S.N. (2007): Targeted quantum dot conjugates for siRNA delivery. Bioconjugate Chemistry, 18: 1391–1396.
Dinesh-Kumar S., Anandalakshmi R., Marathe R., Schiff M., Liu Y. (2003): Virus-induced gene silencing. Plant Functional Genomics, 236: 287–293.
Dong O.X., Ronald C.P. (2019): Genetic engineering for disease resistance in plants: Recent progress and future perspectives. Plant Physiology, 180: 26–38.
Du W.L., Xu Y.L., Xu Z.R., Fan C.L. (2008): Preparation, characterization and antibacterial properties against E. coli K88 of chitosan nanoparticle loaded copper ions. Nanotechnology, 19: 085707. doi: 10.1088/0957-4484/19/8/085707
El Ghaouth A., Arul J., Wilson C., Benhamou N. (1994): Ultrastructural and cytochemical aspects of the effect of chitosan on decay of bell pepper fruit. Physiological and Molecular Plant Pathology, 44: 417–432.
Elmer W., Torre-Roche R.D.L., Pagano L., Majumdar S., Zuverza-Mena N., Dimkpa C., Gardea-Torresday J., White J.C. (2018): Effect of metalloid and metal oxide nanoparticles on Fusarium wilt of watermelon. Plant Disease, 102: 1394–1401.
Filipenko E., Filipenko M., Deineko E., Shumnyi V. (2007): Analysis of integration sites of T-DNA insertions in transgenic tobacco plants. Cytology and Genetics, 41: 199–203.
Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. (1998): Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391: 806–811.
Ghormade V., Deshpande M.V., Paknikar K.M. (2011): Perspectives for nanobiotechnologyenabled protection and nutrition of plants. Biotechnology Advances, 29: 792–803.
Ghosh P.S., Kim C.K., Han G., Forbes N.S., Rotello V.M. (2008a): Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano, 2: 2213–2218.
Ghosh P., Han G., De M., Kim C.K., Rotello V.M. (2008b): Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews, 60: 1307–1315.
Gleiter H. (2000): Nanostructured materials: Basic concepts and microstructure. Acta Materialia, 48: 1–29.
Gogos A., Knauer K., Bucheli T.D. (2012): Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry, 60: 9781–9792.
González-Melendi P., Fernández-Pacheco R., Coronado M.J., Corredor E., Testillano P., Risueño M.C., Marquina C., Ibarra M.R., Rubiales D., Pérez-de-Luque A. (2008): Nanoparticles as smart treatment-delivery systems in plants: Assessment of different techniques of microscopy for their visualization in plant tissues. Annals of Botany, 101: 187–195.
Hermida-Montero L.A., Pariona N., Mtz-Enriquez A.I., Carrion G., Delgado-Paraguay F., Rosas-Saito G. (2019): Aqueous-phase synthesis of nanoparticles of copper/copper oxides and their antifungal effect against Fusarium oxysporium. Journal of Hazardous Materials, 380: 120850. doi: 10.1016/j.jhazmat.2019.120850
Huang L., Cheng X., Liu C., Xing K., Zhang J., Sun G., Li X., Chen X. (2009): Preparation, characterization, and antibacterial activity of oleic acid-grafted chitosan oligosaccharide nanoparticles. Frontiers of Biology in China, 4: 321–327.
Huang W.F., Tsui G.C., Tang C.Y., Yang M. (2016): Fabrication and process investigation of vancomycin loaded silica xerogel/polymer core shell composite nanoparticles for drug delivery. Composites Part B: Engineering, 95: 272–281.
Jayaseelan C., Rahuman A.A., Kirthi A.V., Marimuthu S., Santhoshkumar T., Bagavan A., Gaurav K., Karthik L., Rao K.B. (2012): Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 90: 78–84.
Jin R., Wu G., Li Z., Mirkin C.A., Schatz G.C. (2003): What controls the melting properties of DNA-linked gold nanoparticle assemblies? Journal of the American Chemical Society, 125: 1643–1654.
Khodakovskaya M.V., de Silva K., Nedosekin D.A., Dervishi E., Biris A.S., Shashkov E.V., Galanzha E.I., Zharov V.P. (2011): Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proceedings of the National Academy of Sciences, 108: 1028–1033.
Kim S.T., Saha K., Kim C., Rotello V.M. (2013): The role of surface functionality in determining nanoparticle cytotoxicity. Accounts of Chemical Research, 46: 681–691.
Kochkina Z., Pospeshny G., Chirkov S. (1994): Inhibition by chitosan of productive infection of T-series bacteriophages in the Escherichia coli culture. Microbiology, 64: 211–215.
Krisnaraj C., Ramachandran R., Mohan K., Kalaichelvan P. (2012): Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 93: 95–99.
Kurtjak M., Anicic N., Vukomanovicc M. (2017): Inorganic nanoparticles: Innovative tools for antimicrobial agents. In: Kumawat R.N. (ed.): Antibacterial Agents. Rijeka, InTech: 39–60.
Liu Z., Cai W., He L., Nakayama N., Chen K., Sun X., Chen X., Dai H. (2007): In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotechnology, 2: 47–52.
López-León T., Carvalho E., Seijo B., Ortega-Vinuesa J., Bastos-González D. (2005): Physicochemical characterization of chitosan nanoparticles: Electrokinetic and stability behavior. Journal of Colloid and Interface Science, 283: 344–351.
Lu C., Zhang C., Wen J., Wu G., Tao M. (2001): Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21: 168–171.
Mahajan P., Dhoke S., Khanna A. (2011): Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. Journal of Nanotechnology, 2011: 696535. doi: 10.1155/2011/696535
Martínez-Camacho A., Cortez-Rocha M., Ezquerra-Brauer J., Graciano-Verdugo A., Rodriguez-Félix F., Castillo-Ortega M., Yépiz-Gómez M., Plascencia-Jatomea M. (2010): Chitosan composite films: Thermal, structural, mechanical and antifungal properties. Carbohydrate Polymers, 82: 305–315.
McKnight T.E., Melechko A.V., Griffin G.D., Guillorn M.A., Merkulov V.I., Serna F., Hensley D.K., Doktycz M.J., Lowndes D.H., Simpson M.L. (2003): Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology, 14: 551. doi: 10.1088/0957-4484/14/5/313
Medarova Z., Pham W., Farrar C., Petkova V., Moore A. (2007): In vivo imaging of siRNA delivery and silencing in tumors. Nature Medicine, 13: 372–377.
Mfon R.E., Odiaka N.I., Sarua A. (2017): Interactive effect of colloidal solutionof zinc oxide nanoparticles biosynthesized using Ocimum gratissimum and Vernonia amygdalina leaf extracts on the growth of Amaranthus cruentus seeds. African Journal of Biotechnology, 16: 1481–1489.
Mittapally S., Taranum R., Parveen S. (2018): Metal ions as antibacterial agents. Drug Delivery and Therapeutics, 8: 411–419.
Mitter N., Worrall E.A., Robinson K.E., Li P., Jain R.G., Taochy C., Fletcher S.J., Carroll B.J., Lu G.Q., Xu Z.P. (2017): Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants, 3: 16207. doi: 10.1038/nplants.2016.207
Muzzarelli R.A. (1983): Chitin and its derivatives: New trends of applied research. Carbohydrate Polymers, 3: 53–75.
Niemeyer C.M. (2001): Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angewandte Chemie International Edition, 40: 4128–4158.<4128::AID-ANIE4128>3.0.CO;2-S
No H.K., Park N.Y., Lee S.H., Meyers S.P. (2002): Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology, 74: 65–72.
Palma-Guerrero J., Lopez-Jimenez J., Pérez-Berná A., Huang I.C., Jansson H.B., Salinas J., Villalaín J., Read N., Lopez-Llorca L. (2010): Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Molecular Microbiology, 75: 1021–1032.
Pariona N., Paraguay-Delgado F., Basurto-Cereceda S., Morales-Mendoza J.E., Hermida-Montero L.A., Mtz-Enriquez A.I. (2020): Shape-dependent antifungal activity of ZnO particles against phytopathogenic fungi. Applied Nanoscience, 10: 435–443.
Paul W., Sharma C.P. (2010): Inorganic nanoparticles for targeted drug delivery. In: Sharma C.P. (ed.): Biointegration of Medical Implant Materials: Science and Design. Boca Raton, CRC Press Editors: 204–235.
Pospieszny H., Chirkov S., Atabekov J. (1991): Induction of antiviral resistance in plants by chitosan. Plant Science, 79: 63–68.
Rabea E.I., Badawy M.E.T., Stevens C.V., Smagghe G., Steurbaut W. (2003): Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules, 4: 1457–1465.
Rai M., Deshmukh S., Gade A. (2012): Strategic nanoparticle-mediated gene transfer in plants and animals – A novel approach. Current Nanoscience, 8: 170–179.
Raikova O., Panichkin L., Raikova N. (2006): Studies on the effect of ultrafine metal powders produced by different methods on plant growth and development. Nanotechnologies and information technologies in the 21st century. In: Proceedings of the International Scientific and Practical Conference, May 18–19, 2006, Minsk, Belarus: 108–111.
Ratcliff F., Martin-Hernandez A.M., Baulcombe D.C. (2001): Technical advance: Tobacco rattle virus as a vector for analysis of gene function by silencing. The Plant Journal, 25: 237–245.
Roca M., Haes A.J. (2008): Probing cells with noble metal nanoparticle aggregates. Future Medicine, 3: 555–565.
Rosi N.L., Giljohann D.A., Thaxton C.S., Lytton-Jean A.K., Han M.S., Mirkin C.A. (2006): Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science, 312: 1027–1030.
Ryan J.A., Overton K.W., Speight M.E., Oldenburg C.N., Loo L., Robarge W., Franzen S., Feldheim D.L. (2007): Cellular uptake of gold nanoparticles passivated with BSA-SV40 large T antigen conjugates. Analytical Chemistry, 79: 9150–9159.
Sandhu K.K., McIntosh C.M., Simard J.M., Smith S.W., Rotello V.M. (2002): Gold nanoparticle-mediated transfection of mammalian cells. Bioconjugate Chemistry, 13: 3–6.
Sastry K., Rashmi H., Rao N. (2010): Nanotechnology patents as R&D indicators for disease management strategies in agriculture. Journal of Intellectual Property Rights, 15: 197–205.
Savithramma N., Ankanna S., Bhumi G. (2012): Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision, 2: 61–68.
Selivanov V., Zorin E. (2001): Sustained action of ultrafine metal powders on seeds of grain crops. Perspekt Materialy, 4: 66–69.
Shang Y., Hasan M.K., Ahammed G.J., Li M., Yin H., Zhou J. (2019): Applications of nanotechnology in plant growth and crop protection: A review. Molecules, 24: 2558. doi: 10.3390/molecules24142558
Sharma M. (2019): Transdermal and intravenous nano drug delivery systems. In: Shyam M., Shivendu R., Nandita D., Raghvendra M., Sabu T. (eds): Application of Targeted Nano Drugs and Delivery Systems. Amsterdam, Elsevier: 499–550.
Shenhar R., Rotello V.M. (2003): Nanoparticles: Scaffolds and building blocks. Accounts of Chemical Research, 36: 549–561.
Silva A.T., Nguyen A., Ye C., Verchot J., Moon J.H. (2010): Conjugated polymer nanoparticles for effective siRNA delivery to tobacco BY-2 protoplasts. BMC Plant Biology, 10: 291. doi: 10.1186/1471-2229-10-291
Sopeña F., Maqueda C., Morillo E. (2009): Controlled release formulations of herbicides based on micro-encapsulation. Ciencia e Investigación Agraria, 36: 27–42.
Stanisic D., Costa A., Cruz G., Durán N., Tasic L. (2018): Applications of flavonoids with an emphasis on Hesperidin, as anticancer prodrugs: Phytotherapy as an alternative to chemotherapy. Studies in Natural Products Chemistry, 58: 161–212.
Sun Y., Xia Y. (2002): Shape-controlled synthesis of gold and silver nanoparticles. Science, 298: 2176–2179.
Sun T., Zhou D., Xie J., Mao F. (2007): Preparation of chitosan oligomers and their antioxidant activity. European Food Research and Technology, 225: 451–456.
Sun L.F., Nasrullah, Ke F.Z., Nie Z.P., Wang P., Xu J.G. (2019): Citrus genetic engineering for disease resistance: Past, present and future. International Journal of Molecular Sciences, 20: 5256. doi: 10.3390/ijms20215256
Surudžić R., Janković A., Bibić N., Vukašinović-Sekulić M., Perić-Grujić A., Mišković-Stanković V., Park S.J., Rhee K.Y. (2016): Physico-chemical and mechanical properties and antimicrobial activity of silver/poly(vinyl alcohol)/graphene nanocomposites obtained by electrochemical method. Composites Part B: Engineering, 85: 102–112.
Tang W., Weidner D.A., Hu B.Y., Newton R.J., Hu X.H. (2006): Efficient delivery of small interfering RNA to plant cells by a nanosecond pulsed laser-induced stress wave for posttranscriptional gene silencing. Plant Science, 171: 375–381.
Tang Y., Wang F., Zhao J., Xie K., Hong Y., Liu Y. (2010): Virus-based microRNA expression for gene functional analysis in plants. Plant Physiology, 153: 632–641.
Thomas M., Klibanov A.M. (2003): Conjugation to gold nanoparticles enhances polyethylenimine’s transfer of plasmid DNA into mammalian cells. Proceedings of the National Academy of Sciences, 100: 9138–9143.
Torney F., Trewyn B.G., Lin V.S.Y., Wang K. (2007): Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology, 2: 295–300.
van Esse H.P., Reuber T.L., van der Does D. (2019): Genetic modification to improve disease resistance in crops. New Phytologist, 225: 70–86.
Vincelli P.C. (2016): Genetially engineered crops: Emerging opportunities. Agriculture and Natural Resources Publications: 122.
Wally O., Punja K.Z. (2010): Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. GM Crops, 1: 199–206.
Worrall E.A., Hamid A., Mody K.T., Mitter N., Hanu H.R. (2018): Nanotechnology for plant disease management. Agronomy, 8: 285. doi: 10.3390/agronomy8120285
Xu Z.P., Zeng Q.H., Lu G.Q., Yu A.B. (2006): Inorganic nanoparticles as carriers for efficient cellular delivery. Chemical Engineering Science, 61: 1027–1040.
Xu L., Liu Y., Bai R., Chen C. (2010): Applications and toxicological issues surrounding nanotechnology in the food industry. Pure and Applied Chemistry, 82: 349–372.
Zare Y., Rhee K.Y., Hui D. (2017): Influences of nanoparticle aggregation/agglomeration on the interfacial/interphase and tensile properties of nanocomposites. Composites Part B: Engineering, 122: 41–46.
Zhou H.Y., Zhou D.J., Zhang W.F., Jiang L.J., Li J.B., Chen X.G. (2011): Biocompatibility and characteristics of chitosan/cellulose acetate microspheres for drug delivery. Frontiers of Materials Science, 5: 367–378.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti