Variation in the potential distribution of Agrotis ipsilon (Hufnagel) globally and in Pakistan under current and future climatic conditions

https://doi.org/10.17221/41/2020-PPSCitation:

Hayat U., Qin H., Zhao J., Akram M., Shi J., Ya Z. (2021): Variation in the potential distribution of Agrotis ipsilon (Hufnagel) globally and in Pakistan under current and future climatic conditions. Plant Protect. Sci., 57: 148–158.

supplementary materialdownload PDF

Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae) is a polyphagous moth species that mainly damages various crops and ornamental plants. This widely distributed pest is particularly a nuisance in Pakistan where it damages many crops, e.g., wheat and vegetables. To assess the risk of damage by this moth, we used the CLIMEX model to predict the distribution of A. ipsilon under current and future climatic conditions. Using the literature data, we collected information on the biology and ecology of A. ipsilon relevant for modelling the distribution of this species in Pakistan and worldwide under current and future climatic conditions. Our results revealed that under future climatic scenarios, the highly favourable habitat area of A. ipsilon (ecoclimatic index EI > 30) would decrease globally from 19% at present to 14% in the future, and the moderately favourable habitat area (0 < EI ≤ 15) would increase from 21 to 29%. We found that the northern areas of Pakistan will become highly suitable for the establishment of A. ipsilon. Under the current climatic conditions, the optimal habitats of A. ipsilon (EI > 30) comprised 10% and moderately favourable habitats (EI < 17) accounted for 25% of the total land area in Pakistan. Under future climatic scenarios, the optimal habitat area of the moth in Pakistan could decrease to 5% and the moderately favourable habitat area could cover 63% of the entire land area. The results can be applied in the protection of various crops and ornamental plants against A. ipsilon in Pakistan as well as worldwide.

References:
Abbas F. (2013): Analysis of a historical (1981–2010) temperature record of the Punjab province of Pakistan. Earth Interactions, 17: 1–23. https://doi.org/10.1175/2013EI000528.1
 
Aljaryian R., Kumar L., Taylor S. (2016): Modelling the current and potential future distributions of the sunn pest Eurygaster integriceps (Hemiptera: Scutelleridae) using CLIMEX. Pest Management Science, 72: 1989–2000. https://doi.org/10.1002/ps.4247
 
Archer T., Musick G., Murray R. (1980): Influence of temperature and moisture on black cutworm (Lepidoptera: Noctuidae) development and reproduction. The Canadian Entomologist, 112: 665–673.  https://doi.org/10.4039/Ent112665-7
 
Bajwa G., Gul H. (2000): Some observations on insect species of Paulownia species at Pakistan Forest Institute Campus, Peshawar. Pakistan Journal of Forestry, 50: 71–80.
 
Bale J.S., Masters G.J., Hodkinson I.D., Awmack C., Bezemer T.M., Brown V.K., Butterfield J., Buse A., Coulson J.C., Farrar J., Good J.E. (2002): Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Global Change Biology, 8: 1–16.  https://doi.org/10.1046/j.1365-2486.2002.00451.x
 
Beck S.D. (1986): Effects of photoperiod and thermoperiod on growth of Agrotis ipsilon (Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 79: 821–828.  https://doi.org/10.1093/aesa/79.5.821
 
Beck S.D. (1988): Cold acclimation of Agrotis ipsilon (Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 81: 964–968.  https://doi.org/10.1093/aesa/81.6.964
 
Bishara I. (1932): The Greasy Cutworm (Agrotis ipsilon, Rott.). Cairo, Ministry of Agriculture, Egypt.
 
Caesar J., Alexander L., Vose R. (2006): Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. Journal of Geophysical Research: Atmospheres, 111: D05101. doi: org/10.1029/2005JD006280 https://doi.org/10.1029/2005JD006280
 
Capinera J.L. (2009): Black Cutworm, Agrotis ipsilon (Hufnagel) (Insecta: Lepidoptera: Noctuidae). Gainesville, University of Florida.
 
Chaudhry Q., Rasul G., Kamal A., Ahmad M., Mahmood S. (2015): Technical Report on Karachi Heat wave June 2015.Government of Pakistan Ministry of Climate Change. Available at http://www.ndma.gov.pk/files/heatwave.pdf (accesed Mar 23, 2016).
 
CIE (1969): Distribution Maps of Plant Pests, No. 261. Wallingford, CAB International.
 
Clement S.L., Kaster L.V., Showers W.B., Schmidt R.S. (1985): Seasonal changes in the reproductive condition of female black cutworm moths (Lepidoptera: Noctuidae). Journal of the Kansas Entomological Society, 58: 62–68.
 
Dahi H.F., Ibrahem W.G., Ali M.M. (2009): Heat requirements for the development of the black cutworm, Agrotis ipsilon (Hüfnagel) (Noctuidae: Lepidoptera). Egyptian Academic Journal of Biological Sciences, 2: 117–124.  https://doi.org/10.21608/eajbsa.2009.15502
 
Harris I., Jones P.D., Osborn T.J., Lister D.H. (2014): Updated high-resolution grids of monthly climatic observations – the CRU TS3. 10 Dataset. International Journal of Climatology, 34: 623–642. https://doi.org/10.1002/joc.3711
 
Hashmi A., Hussain M., Ulfat M. (1983): Insects pest complex of wheat crop. Pakistan Journal of Zoology, 15: 169–176.
 
Huang M., Ge X., Shi H., Tong Y., Shi J. (2019): Prediction of current and future potential distributions of the eucalyptus pest Leptocybe invasa (Hymenoptera: Eulophidae) in China using the CLIMEX model. Pest management Science, 75: 2958–2968. https://doi.org/10.1002/ps.5408
 
IPCC (2007): Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, Cambridge University Press.
 
Ives W. (1973): Heat units and outbreaks of the forest tent caterpillar, Malacosoma disstria (Lepidoptera: Lasiocampidae). The Canadian Entomologist, 105: 529–543. https://doi.org/10.4039/Ent105529-4
 
Khan S.M. (1999): Effectiveness of Microplitis mediator (Hym.: Braconidae) against its hosts Agrotis segetum and A. ipsilon (Lepidoptera: Noctuidae). Pakistan Journal of Biological Sciences, 2: 344–346. https://doi.org/10.3923/pjbs.1999.344.346
 
Kriticos D.J., Jarošik V., Ota N. (2014): Extending the suite of bioclim variables: A proposed registry system and case study using principal components analysis. Methods in Ecology and Evolution, 5: 956–960.  https://doi.org/10.1111/2041-210X.12244
 
Kriticos D.J., Webber B.L., Leriche A., Ota N., Macadam I., Bathols J., Scott J.K. (2012): CliMond: Global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution, 3: 53–64. https://doi.org/10.1111/j.2041-210X.2011.00134.x
 
Maalik S., Rana S.A., Khan H.A., Ashfaq M. (2013): Diversity and abundance of lepidopteran populations from selected crops of district Faisalabad, Pakistan. Pakistan Journal of Agricultural Sciences, 50: 95–101.
 
Menéndez R., Megías A.G., Hill J.K., Braschler B., Willis S.G., Collingham Y., Fox R., Roy D.B., Thomas C.D. (2006): Species richness changes lag behind climate change. Proceedings of the Royal Society B: Biological Sciences, 273: 1465–1470. https://doi.org/10.1098/rspb.2006.3484
 
Pöyry J., Luoto M., Heikkinen R.K., Kuussaari M., Saarinen K. (2009): Species traits explain recent range shifts of Finnish butterflies. Global Change Biology, 15: 732–743.  https://doi.org/10.1111/j.1365-2486.2008.01789.x
 
Rings R.W., Arnold F.J., Johnson B.A. (1975): Host range of the black cutworm on vegetables: A bibliography. Bulletin of the ESA, 21: 229–234. https://doi.org/10.1093/besa/21.4.229
 
Senaratne K.W., Palmer W.A., Sutherst R.W. (2006): Use of CLIMEX modelling to identify prospective areas for exploration to find new biological control agents for prickly acacia. Australian Journal of Entomology, 45: 298–302. https://doi.org/10.1111/j.1440-6055.2006.00554.x
 
Shakur M., Ullah F., Naem M., Amin M., Saljoqi A., Zamin M. (2007): Effect of various insecticides for the control of potato cutworm (Agrotis ipsilon Huf., Noctuidae: Lepidoptera) at Kalam Swat. Sarhad Journal of Agriculture, 23: 423–426.
 
Showers W.B. (1997): Migratory ecology of the black cutworm. Annual Review of Entomology, 42: 393–425.  https://doi.org/10.1146/annurev.ento.42.1.393
 
Sutherst R., Maywald G., Kriticos D. (2007): CLIMEX version 3 user's guide. South Yarra: Hearne Scientific Software; CSIRO.
 
Sutherst R.W., Maywald G. (2005): A climate model of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae): Implications for invasion of new regions, particularly Oceania. Environmental Entomology, 34: 317–335. https://doi.org/10.1603/0046-225X-34.2.317
 
Tebaldi C., Hayhoe K., Arblaster J.M., Meehl G.A. (2006): Going to the extremes. Climatic change, 79: 185–211. https://doi.org/10.1007/s10584-006-9051-4
 
Wagner T.L., Wu H.I., Sharpe P.J., Schoolfield R.M., Coulson R.N. (1984): Modelling insect development rates: A literature review and application of a biophysical model. Annals of the Entomological Society of America, 77: 208–220.  https://doi.org/10.1093/aesa/77.2.208
 
Wei J., Zhao Q., Zhao W., Zhang H. (2018): Predicting the potential distributions of the invasive cycad scale Aulacaspis yasumatsui (Hemiptera: Diaspididae) under different climate change scenarios and the implications for management. PeerJ, 6:e4832. doi: 10.7717/peerj.4832 https://doi.org/10.7717/peerj.4832
 
Wilson R.J., Maclean I.M. (2011): Recent evidence for the climate change threat to Lepidoptera and other insects. Journal of Insect Conservation, 15: 259–268. https://doi.org/10.1007/s10841-010-9342-y
 
Yonow T., Hattingh V., de Villiers M. (2013): CLIMEX modelling of the potential global distribution of the citrus black spot disease caused by Guignardia citricarpa and the risk posed to Europe. Crop Protection, 44: 18–28. https://doi.org/10.1016/j.cropro.2012.10.006
 
Zethner O., Khan B.M., Chaudhry M.I., Bolet B., Khan S., Khan H., Nawaz G. (1987): Agrotis segetum granulosis virus as a control agent against field populations of Agrotis ipsilon and A. Segetum [Lep.: Noctuidae] on tobacco, okra, potato and sugar beet in northern Pakistan. Entomophaga, 32: 449–455. https://doi.org/10.1007/BF02373513
 
supplementary materialdownload PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti