Biological impact, oxidative stress and adipokinetic hormone activities of Agrotis ipsilon in response to bioinsecticides

https://doi.org/10.17221/46/2022-PPSCitation:

Moustafa M.A.M., Elmenofy W.H., Osman E.A., El-Said N.A., Awad M. (2022): Biological impact, oxidative stress and adipokinetic hormone activities of Agrotis ipsilon in response to bioinsecticides. Plant Protect. Sci., 58: 326–337.

download PDF

The use of biological control products enhances the reduction of harmful pressures on the environment caused by the use of conventional pesticides. Therefore, this study aims to evaluate the toxicity of eight bioinsecticides on the black cutworm Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae) to understand the relationships between insecticide exposure and insect response at the individual and population levels. The bioassay results showed that emamectin benzoate had high toxicity against A. ipsilon second instar larvae with an LC50 of 0.007 (mg/L). Sublethal concentration (LC30) of emamectin benzoate, spinosyn group and Bacillus thuringiensis formulation (Dipel 2X) had significantly prolonged pupal period. In addition, emamectin benzoate significantly decreased the number of eggs laid per female (135.3 ± 6.919) compared with the control treatment. Thus, the formulation of chlorfenapyr showed a 1.26-fold reduction in hatching rate. Meanwhile, the activities of oxidative stress enzymes (catalase, superoxide dismutase, lipid peroxidase, and glutathione reductase) were significantly affected due to exposure to sublethal concentration. Changes in adipokinetic hormone (AKH) transcriptional regulation were detected via SQ-PCR via using cDNA synthesized from mRNA isolated from treated A. ipsilon larvae. The results showed a higher transcription rate of AKH in spinotram-treated larvae with a 1.42-fold increase over untreated larvae. Our results provide useful information for integrated pest management programs for A. ipsilon by using bioinsecticides.

References:
Abbott W.S. (1925): A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265–267.  https://doi.org/10.1093/jee/18.2.265a
 
Abd El-Aziz N.M., Fahmy N.M. (2015): Oxidative stress effects of abamectin and hematoporphyrin with the antioxidant efficiency in the cotton leaf worm, Spodoptera littoralis (Biosd.). Egyptian Academic Journal of Biological Sciences, 7: 55–63.
 
Aebi H. (1984): Catalase in vitro. In: Packer L. (ed.). Methods in Enzymology. Cambridge, Academic Press: 121–126.
 
Ahmed M., Mehmood R. (2015): Monitoring of resistance to new chemistry insecticides in Spodoptera litura (Lepidoptera: Noctuidae) in Pakistan. Journal of Economic Entomology, 108: 1279–1288. https://doi.org/10.1093/jee/tov085
 
Awad M., Ibrahim E.S., Osman E.I., Elmenofy W.H., Mahmoud A.M., Atia M.A.M., Moustafa M.A.M. (2022): Nano-insecticides against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae): Toxicity, development, enzyme activity, and DNA mutagenicity. PLoS One, 17: e0254285. doi: 10.1371/journal.pone.0254285 https://doi.org/10.1371/journal.pone.0254285
 
Bacci L., Lupi D., Savoldelli S., Rossaro B. (2016): A review of Spinosyns, a derivative of biological acting substances as a class of insecticides with a broad range of action against many insect pests. Journal of Entomological and Acarological Research, 48: 5653. doi: 10.4081/jear.2016.5653 https://doi.org/10.4081/jear.2016.5653
 
Bagchi D., Bagchi M., Hassoun E.A., Stohs S.J. (1995): In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides. Toxicology, 104: 129–140. https://doi.org/10.1016/0300-483X(95)03156-A
 
Black B.C., Hollingworth R.M., Ahammadsahib K.I., Kukel C.D., Donovan S. (1994): Insecticidal action and mitochondrial uncoupling activity of AC-303,630 and related halogenated pyrroles. Pesticide Biochemistry and Physiology, 50: 115–128. https://doi.org/10.1006/pest.1994.1064
 
Bravo A., Gómez I., Conde J., Muñoz-Garay C., Sánchez J., Miranda R., Zhuang M., Gill S.S., Soberón M. (2004): Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochimica et Biophysica Acta, 1667: 38–46. https://doi.org/10.1016/j.bbamem.2004.08.013
 
Bret B.L., Larson L.L., Schoonover J.R., Sparks T.C., Thompson G.D. (1997): Biological properties of spinosad. Down to Earth, 52: 6–13.
 
Claudianoc C., Ranson H., Johnson R.M., Biswas S., Schuler M.A., Berenbaum M.R., Feyereisen R., Oakeshott J.G. (2006): A deficit of detoxification enzymes: Pesticide sensitivity and environmental response in the honeybee. Insect Molecular Biology, 15: 615–636. https://doi.org/10.1111/j.1365-2583.2006.00672.x
 
Crouch L.S., Wrzesinski C.L., Feely W.F. (1997): Fate of [14C/3H] emamectin benzoate in cabbage. 1. Extractable residues. Journal of Agricultural and Food Chemistry, 45: 2744–2757. https://doi.org/10.1021/jf9609082
 
Dagar V.S., Mishra M., Kumar S. (2020): Effect of dietary stress of emamectin benzoate on the fitness cost of American bollworm, Helicoverpa armigera (Hübner, 1808). International Journal of Tropical Insect Science, 40: 1069–1077. https://doi.org/10.1007/s42690-020-00168-x
 
Desneux N., Decourtye A., Delpuech J.M. (2007): The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52: 81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440
 
Du J., Yu W., Wang M., Zhang C., Mu W. (2013): Selective toxicity of three amide pesticides to black cutworm Agrotis ipsilon and earthworm Eisenia foetida. Acta Phytopphylacica Sinica, 40: 266–272.
 
Duce I.R., Bhandal N.S., Scott R.H., Norris T.M. (1995): Effects of Ivermectin on γ-aminobutyric acid and glutamate gated chloride conductance in arthropod skeltel muscle. In: Clark J.M. (ed.). Molecular Action of Insecticides on Ion Channels. Washington, DC, American Chemical Society: 251–263.
 
Duncan D.B. (1955): Multiple range and multiple F tests. Biometrics, 11: 1–42. https://doi.org/10.2307/3001478
 
El-Helaly A.A., Sayed W.A.A., El-Bendary H.M. (2020): Impact of emamectin benzoate on nucleopolyhedrosis virus infectivity of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control, 30: 111. doi: 10.1186/s41938-020-00314-0 https://doi.org/10.1186/s41938-020-00314-0
 
El-Sheikh E.A. (2015): Comparative toxicity and sublethal effects of emamectin benzoate, lufenuron and spinosad on Spodoptera littoralis Boisd. (Lepidoptera: Noctuidae). Crop Protection, 67: 228–234. https://doi.org/10.1016/j.cropro.2014.10.022
 
Felton G.W. (1995): Oxidative stress of vertebrates and invertebrates. In: Ahmad S. (ed.). Oxidative Stress and Antioxidant Defenses in Biology. Boston, Springer: 356–434.
 
Finney D.J. (1971): Probit Analysis. Cambridge, Cambridge University Press.
 
Gacemi A., Guenaoui Y. (2012): Efficacy of emamectin benzoate on Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) infesting a protected tomato crop in Algeria. Academic Journal of Entomology, 5: 37–40.
 
Gäde G., Hoffmann K.H., Spring J.H. (1997): Hormonal regulation in insects: Facts, gaps, and future directions. Physiological Reviews, 77: 963–1032. https://doi.org/10.1152/physrev.1997.77.4.963
 
Goldberg D.M., Spooner R.J. (1983): Assay of glutathione reductase. In: Bergmeyen H.V. (ed.). Methods of Enzymatic Analysis. Deerfiled Beach, Verlog Chemie: 258–265.
 
Gomez A.K., Gomez A.A. (1984): Statistical Procedures for Agricultural Research. New York, John Wiley and Sons: 295–310.
 
Grafton-Cardwell E.E., Godfrey L.D., Chaney W.E., Bentley W.J. (2005): Various novel insecticides are less toxic to humans, more specific to key pests. California Agriculture, 59: 29–34. https://doi.org/10.3733/ca.v059n01p29
 
Han W.S., Zhang S., Shen F., Liu M., Ren C., Gao X. (2012): Residual toxicity and sublethal effects of chlorantraniliprole on Plutella xylostella (Lepidoptera: Plutellidae). Pest Managment Science, 68: 1184–1190. https://doi.org/10.1002/ps.3282
 
He F., Sun S., Tan H., Sun X., Qin C., Ji S., Li X., Zhang J., Jiang X. (2019): Chlorantraniliprole against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae): From biochemical/physiological to demographic responses. Scientific Reports, 9: 1–17.
 
Horowitz A.R., Ishaaya I. (2004): Biorational insecticides – Mechanisms, selectivity and importance in pest management programs. In: Horowitz A.R., Ishaaya I. (eds). Insect Pest Management – Field and Protected Crops. Berlin, Springer: 1–28.
 
Ilhan A., Gurel A., Armutcu F., Kamisli S., Iraz M. (2005): Antiepileptogenic and antioxidant effects of Nigella sativa oil against pentylenetet-razolinduced kindling in mice. Neuropharmacology, 49: 456–464. https://doi.org/10.1016/j.neuropharm.2005.04.004
 
IRAC – Insecticide Resistance Action Committee (2020): IRAC Mode of Action Classification, version 9.3. IRAC Mode of Action Working Group. Available at https://irac-online.org/mode-of action/classification-online/
 
Jansson R.K., Peterson R.F., Halliday W.R., Mookerjeem P., Halliday W.R.M., Argentine J.A., Dybas R. (1997): Development of a novel soluble granule formulation of emamectin benzoate for control of lepidopterous pests. Florida Entomologist, 80: 425–443. https://doi.org/10.2307/3495607
 
Kandil M.A., Abdel-kerim R.N., Moustafa M.A.M. (2020a): Lethal and sublethal effects of bio-and chemical insecticides on the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Egyptian Journal of Biological Pest Control, 30: 1–7. https://doi.org/10.1186/s41938-020-00278-1
 
Kandil M., Fouad E., Elhefny D., Abdel-Mobdy Y. (2020b): Toxicity of fipronil and emamectin benzoate and their mixtures against cotton leafworm, Spodoptera littoralis (Lepidoptera: Noctuidae) with relation to GABA content. Journal of Economic Entomology, 8: 385–389. https://doi.org/10.1093/jee/toz232
 
Karthi E., Vaideki K., Shivakumar M.S., Ponsankar A., Thanigaivel A., Chellappandian M., Vasantha-Srinivasan P., Muthu-Pandian C.K., Hunter W.B., Senthil-Nathan S. (2018): Effect of Aspergillus flavus on the mortality and activity of antioxidant enzymes of Spodoptera litura Fab. (Lepidoptera: Noctuidae) larvae. Pesticide Biochemistry and Physiology, 149: 54–60. https://doi.org/10.1016/j.pestbp.2018.05.009
 
Kashiwagi A., Kashiwagi K., Takase M., Hanada H., Nakamura M. (1997): Comparison of catalase in diploid and haploid Rana rugosa using heat and chemical inactivation techniques. Comparative Biochemistry and Physiology B, 118: 499503. doi: 10.1016/S0305-0491(97)00216-2 https://doi.org/10.1016/S0305-0491(97)00216-2
 
Kodrík D., Socha R. (2005): The effect of insecticide treatment on adipokinetic hormone titer in insect body. Pest Management Science, 61: 1077–1082.  https://doi.org/10.1002/ps.1087
 
Kodrík D., Krishnan N., Habuštová O. (2007): Is the titer of adipokinetic peptides in Leptinotarsa decemlineata fed on genetically modified potatoes increased by oxidative stress? Peptides, 28: 974–980. https://doi.org/10.1016/j.peptides.2007.01.017
 
Kodrík D., Plavsin I., Velki M., Staskova T. (2015): Enhancement of insecticide efficacy by adipokinetic hormones. In: Montgomery J. (ed.). Insecticides; Occurrence, Global Threats and Ecological Impact. New York, Nova Publishers: 77–91.
 
Li W., Lu Z., Li L., Yu Y., Dong S., Men X., Ye B. (2018): Sublethal effects of imidacloprid on the performance of the bird cherry-oat aphid Rhopalosiphum padi. PLoS One, 13: e0204097. doi: 10.1371/journal.pone.0204097  https://doi.org/10.1371/journal.pone.0204097
 
Liu D.G., Trumble J.T. (2005): Interactions of plant resistance and insecticides on the development and survival of Bactericerca cockerelli [Sulc] (Homoptera: Psyllidae). Crop Protection, 24: 111–117. https://doi.org/10.1016/j.cropro.2004.07.001
 
López J.D., Latheef M.A., Hoffman W.C. (2010): Effect of emamectin benzoate on mortality, proboscis extension, gustation and reproduction of the corn earworm, Helicoverpa zea. Journal of Insect Science, 10: 1–16. https://doi.org/10.1673/031.010.8901
 
Lu S.C., Kuhlenkamp J., Garcia-Ruiz C., Kaplowitz N. (1991): Hormone-mediated down regulation of hepatic glutathione synthesis in the rat. Journal of Clinical Investigation, 88: 260–269. https://doi.org/10.1172/JCI115286
 
Moustafa M.M.A., Vlasák J., Sehnal F. (2013): Activities of modified Cry3A-type toxins on the red flour beetle, Tribolium castaneum (Herbst). Journal of Applied Entomology, 137: 684–692. https://doi.org/10.1111/jen.12054
 
Moustafa M.M.A., Kákai Á., Awad M., Fónagy A. (2016): Sublethal effects of spinosad and emamectin benzoate on larval development and reproductive activities of the cabbage moth, Mamestra brassicae L. (Lepidoptera: Noctuidae). Crop Protection, 90: 197–204. https://doi.org/10.1016/j.cropro.2016.09.004
 
Moustafa M.A.M., Fouad E.A., Abdel Mobdy Y., Hamow K.Á., Mikó Z., Molnár B.P., Fónagy A. (2021a): Toxicity and sublethal effects of chlorantraniliprole and indoxacarb on Spodoptera littoralis (Lepidoptera: Noctuidae). Applied Entomology and Zoology, 56: 115–124.  https://doi.org/10.1007/s13355-020-00721-7
 
Moustafa M.A.M., Awad M., Amer A., Hassan N.N., Ibrahim E.S., Ali H.M., Akrami M., Salem M.Z.M. (2021b): Insecticidal activity of lemongrass essential oil as an eco-friendly agent against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). Insects, 12: 737. doi: 10.3390/insects12080737 https://doi.org/10.3390/insects12080737
 
Mushtaq M., Allen L.R.S., Crouch L.S., Wislocki P.G. (1997): Fate of 3H- and 14C-labeled emamectin benzoate in lactating goats. Journal of Agricultural and Food Chemistry, 45: 253–259. https://doi.org/10.1021/jf9604089
 
Nishikimi M., Appaji N., Yagi K. (1972): The occurrence of superoxide anion in the reaction of reduced phenazinc methosulfate and molecular oxygen. Biochemical and Biophysical Research Communications, 46: 849–854. https://doi.org/10.1016/S0006-291X(72)80218-3
 
Ohkawa H., Ohishi N., Yagi K. (1979): Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95: 351–358. https://doi.org/10.1016/0003-2697(79)90738-3
 
Rindler P.M., Plafker S.M., Szweda L.I., Kinter M. (2013): High dietary fat selectively increases catalase expression within cardiac mitochondria. Journal of Biological Chemistry, 288: 1979–1990. https://doi.org/10.1074/jbc.M112.412890
 
Salgado V.L., Watson G.B., Sheets J.J. (1997): Studies on the modes of action of spinosad the active ingredient in Tracer insect control. In: Proceedings of the Beltwide Cotton Conference, Jan 6–10, 1997, New Orleans, USA: 1082–1085.
 
Sayed M.M.A., Behle R.W. (2017): Evaluating a dual microbial agent biopesticide with Bacillus thuringiensis var. kurstaki and Beauveria bassiana blastospores. Biocontrol Science and Technology, 27: 461–474.  https://doi.org/10.1080/09583157.2017.1303662
 
Snedecor G.W., Cochran W.G. (1989): Statistical Methods. Ameshttps, Iowa State University Press.
 
Sparks T.C., Thompson G.D., Kirst H.A., Hertlein M.B., Larson L.L., Worden T.V., Thibault S.T. (1998): Biological activity of the spinosyns. New fermentation derived insect control agents on tobacco budworm (Lepidoptera: Noctuidae) larvae. Journal of Economic Entomology, 91: 1277–1283. https://doi.org/10.1093/jee/91.6.1277
 
Sparks T.C., Crouse G.D., Demeter D.A., Samaritoni G., McLeod C.L. (2019): Discovery of highly insecticidal synthetic spinosyn mimics – CAMD enabled de novo design simplifying a complex natural product. Pest Managment Science, 75: 309–313.  https://doi.org/10.1002/ps.5217
 
Su C., Xia X. (2020): Sublethal effects of methylthio-diafenthiuron on the life table parameters and enzymatic properties of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). Pesticide Biochemistry and Physiology, 162: 43–51. https://doi.org/10.1016/j.pestbp.2019.08.011
 
Thompson G.D., Michel K.H., Yao R.C., Mynderse J.S., Mosburg C.T., Worden T.V., Chio E.H., Sporks T.C., Hutchins S.H. (1997): The discovery of Saccharopolyspora spinosa and a new class of insect control products. Down to Earth, 52: 1–5.
 
Urbaneja A., González-Cabrera J., Arnó J., Gabarra R. (2012): Prospects for the biological control of Tuta absoluta in tomatoes of the Mediterranean basin. Pest Managment Science, 68: 1215–1222. https://doi.org/10.1002/ps.3344
 
Večeřa J., Krishnan N., Alquicer G., Kodrík D., Socha R. (2007): Adipokinetic hormone-induced enhancement of antioxidant capacity of Pyrrhocoris apterus hemolymph in response to oxidative stress. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 146: 336–342.
 
Vojoudi S., Saber M., Gharekhani G., Esfandiari E. (2017): Toxicity and sublethal effects of hexaflumuron and indoxacarb on the biological and biochemical parameters of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in Iran. Crop Protection, 91: 100–107. https://doi.org/10.1016/j.cropro.2016.09.020
 
Williamson R.C., Potter D.A. (1997): Oviposition of black cutworm (Lepidoptera: Noctuidae) on creeping bent grass putting greens and removal of eggs by mowing. Journal of Economic Entomology, 90: 590–594.  https://doi.org/10.1093/jee/90.2.590
 
Xu C., Zhang Z., Cui K., Zhao Y., Han J., Liu F., Mu W. (2016): Effects of sublethal concentrations of Cyantraniliprole on the development, fecundity and nutritional physiology of the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). PLoS One, 11: e0156555. doi: 10.1371/journal.pone.0156555 https://doi.org/10.1371/journal.pone.0156555
 
Yin X.H., Wu Q.J., Li X.F., Zhang Y.J., Xu B.Y. (2008): Sublethal effects of spinosad on Plutella xylostella (Lepidoptera: Yponomeutidae). Crop Protection, 27: 1385–1391. https://doi.org/10.1016/j.cropro.2008.05.008
 
Yu W., Du J., Hu Y., Shen R., Mu W. (2012): Toxicity of six insecticides to black cutworm Agrotis ipsilon (Rottemberg) and safety evaluation to oil organisms. Acta Phytophylacica Sinica, 39: 277–282.
 
Zhang J. (2014): A sequential procedure for detecting compromised items in the item pool of a CAT system. Applied Psychological Measurement, 38: 87–104. https://doi.org/10.1177/0146621613510062
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti