Etiology, diagnostic approaches and management strategies of Acidovorax citrulli, a bacterial fruit blotch pathogen of cucurbits

https://doi.org/10.17221/52/2020-PPSCitation:

Azman Husni A.A., Ismail S.I., Jaafar N., Zulperi D. (2021): Etiology, diagnostic approaches and management strategies of Acidovorax citrulli, a bacterial fruit blotch pathogen of cucurbits. Plant Protect. Sci., 57: 75–94.

download PDF

Bacterial fruit blotch (BFB) caused by Acidovorax citrulli, represents one of the most destructing diseases of cucurbits, especially to watermelon- and melon producing-regions. This disease has been spread sporadically to many countries globally, due to the unintentionally dispersal of contaminated commercial seeds. The BFB causes massive yield losses up to 100% under conducive conditions. Once infected, all parts of the host plants are extremely susceptible to this bacterium, especially the seedlings and fruits parts. In recent years, various management approaches and detection tools have been employed to control A. citrulli. Genotypic characterization methods revealed two distinct groups of A. citrulli strains; (i) group I strains primarily isolated from non-watermelon cucurbits and consist of moderate to highly aggressive strains from wide range of cucurbit hosts, and (ii) group II strains isolated from watermelon which are highly aggressive on watermelon, but mildly aggressive on non-watermelon hosts. In this paper, an attempt has been made to review research findings where the impact of diverse methods and management approaches were applied in detection and controlling of A. citrulli infection. A better understanding of this devastating bacterium will serve as guidelines for agricultural practitioners in developing the most efficient and sustainable BFB control strategies.

References:
Adhikari M., Yadav D.R., Kim S.W., Um Y.H., Kim H.S., Lee S.C., Song J.Y., Kim H.G., Lee Y.S. (2017): Biological control of bacterial fruit blotch of watermelon pathogen (Acidovorax citrulli) with rhizosphere associated bacteria. Plant Pathology Journal, 33: 170–183. https://doi.org/10.5423/PPJ.OA.09.2016.0187
 
Alvarez A.M. (2004): Integrated approaches for detection of plant pathogenic bacteria and diagnosis of bacterial diseases. Annual Review Phytopathology, 42: 339–366. https://doi.org/10.1146/annurev.phyto.42.040803.140329
 
Amadi J.E., Adebola M.O., Eze C.S. (2009): Isolation and identification of a bacterial blotch organism from watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai). African Journal of Agricultural Research, 4: 1291–1294.
 
Amagliani G., Omiccioli E., del Campo A., Bruce I.J., Brandi G., Magnani M. (2006): Development of a magnetic capture hybridization-PCR assay for Listeria monocytogenes direct detection in milk samples. Journal of Applied Microbiology, 100: 375–383. https://doi.org/10.1111/j.1365-2672.2005.02761.x
 
Assis S.M. P., Mariano R.L.R., Silva-Hanlin D.M.W., Duarte V. (1999): Bacterial fruit blotch caused by Acidovorax avenae subsp. citrulli in melon in the state of Rio Grande do Norte, Brazil. Fitopatologia Brasileira, 24: 191.
 
Ayyadurai S., Flaudrops C., Raoult D., Drancourt M. (2010): Rapid identification and typing of Yersinia pestis and other Yersinia species by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. BMC Microbiology, 10: 285. doi: 10.1186/1471-2180-10-285 https://doi.org/10.1186/1471-2180-10-285
 
Babadoost M., Pataky N. (2002): First report of bacterial fruit blotch of watermelon caused by Acidovorax avenae subsp. citrulli in Illinois. Plant Disease, 86: 443–443. https://doi.org/10.1094/PDIS.2002.86.4.443A
 
Bahar O., Burdman S. (2010): Bacterial fruit blotch: A threat to the cucurbit industry. Israel Journal of Plant Sciences, 58: 19–31. https://doi.org/10.1560/IJPS.58.1.19
 
Bahar O., Kritzman G., Burdman S. (2009): Bacterial fruit blotch of melon: Screens for disease tolerance and role of seed transmission in pathogenicity. European Journal of Plant Pathology, 123, 71–83. https://doi.org/10.1007/s10658-008-9345-7
 
Besler K.R., Little E.L. (2017): Diversity of Serratia marcescens strains associated with cucurbit yellow vine disease in Georgia. Plant Disease, 101: 129–136. https://doi.org/10.1094/PDIS-05-16-0618-RE
 
Black M.C., Isakeit T., Barnes L.W., Kucharek T.A., Hoover R.J., Hodge N.C. (1994): First report of bacterial fruit blotch of watermelon in Texas. Plant Disease, 78: 831. doi: 10.1094/PDIS.2002.86.4.443A https://doi.org/10.1094/PDIS.2002.86.4.443A
 
Block C.C., Shepherd L.M. (2008): Long-term survival and seed transmission of Acidovorax avenae subsp. citrulli in melon and watermelon seed. Plant Health Progress, 9: 36. doi: 10.1094/PHP-2008-1219-01-BR  https://doi.org/10.1094/PHP-2008-1219-01-BR
 
Burdman S., Kots N., Kritzman G., Kopelowitz J. (2005): Molecular, physiological, and host-range characterization of Acidovorax avenae subsp. citrulli isolates from watermelon and melon in Israel. Plant Disease, 89: 1339–1347. https://doi.org/10.1094/PD-89-1339
 
Burdman S., Walcott R.O.N. (2012): Acidovorax citrulli: Generating basic and applied knowledge to tackle a global threat to the cucurbit industry. Molecular Plant Pathology, 13: 805–815. https://doi.org/10.1111/j.1364-3703.2012.00810.x
 
Campbell C.T., Kim G. (2007): SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials, 28: 2380–2392. https://doi.org/10.1016/j.biomaterials.2007.01.047
 
Cheng A.H., Hsu Y.L., Huang T.C., Wang H.L. (2000): Susceptibility of cucurbits to Acidovorax avenae subsp. citrulli and control of fruit blotch on melon. Plant Pathology Bulletin, 9: 151–156.
 
Cho M.S., Park D.H., Ahn T.Y., Park D.S. (2015): Rapid and specific detection of Acidovorax avenae subsp. citrulli using SYBR green-based real-time PCR amplification of the YD-repeat protein gene. Journal of Microbiology and Biotechnology, 25: 1401–1409. https://doi.org/10.4014/jmb.1502.02029
 
Choi O., Cho S.K., Kang B., Cho J., Park J., Lee Y., Kim J. (2016): Two genetically distinct groups of Acidovorax citrulli are present in watermelon-growing fields in Korea. Journal of Agriculture & Life Science, 50: 53–59.
 
Copeland A., Lucas S., Lapidus A., Barry K., Detter J., del Glavina R.T, Dalin E., Tice H., Pitluck S., Kiss H., Brettin T. (2006): Complete Sequence of Acidovorax avenae subsp. citrulli AAC00-1. Walnut Creek, US DOE Joint Genome Institute.
 
Crall J.M., Schenck N.C. (1969): Bacterial fruit rot of watermelon in Florida. Plant Disease Reporter, 53: 74–75.
 
Cunty A., Audusseau C., Paillard S., Olivier V., François C., Rivoal C., Poliakoff F. (2019): First report of Acidovorax citrulli, the causal agent of bacterial fruit blotch, on melon (Cucumis melo) in Guadeloupe (France). Plant Disease, 103: 1017–1017. https://doi.org/10.1094/PDIS-10-18-1825-PDN
 
Demir G. (1996): A new bacterial disease of watermelon in Türkiye: Bacterial fruit blotch of watermelon (Acidovorax avenae subsp. citrulli (Schaad et al.) Willems et al.). Journal of Turkish Phytopathology, 25: 43–49.
 
Dice L.R. (1945): Measures of the amount of ecologic association between species. Ecology, 26: 297–302. https://doi.org/10.2307/1932409
 
Dutta B. (2011): Localization of Acidovorax citrulli in watermelon seed and its influence on survival and seedling transmission of bacterial fruit blotch of cucurbits. [PhD Thesis] Athens, University of Georgia: 235.
 
Dutta B., Avci U., Hahn M.G., Walcott R.R. (2012): Location of Acidovorax citrulli in infested watermelon seeds is influenced by the pathway of bacterial invasion. Phytopathology, 102: 461–468. https://doi.org/10.1094/PHYTO-10-11-0286-R
 
Eckshtain-Levi N., Munitz T., Živanović M., Traore S.M., Spröer C., Zhao B., Welbaum G., Walcott R., Sikorski J., Burdman S. (2014): Comparative analysis of type III secreted effector genes reflects divergence of Acidovorax citrulli strains into three distinct lineages. Phytopathology, 104: 1152–1162. https://doi.org/10.1094/PHYTO-12-13-0350-R
 
Eckshtain-Levi N., Shkedy D., Gershovits M., da Silva G.M., Tamir-Ariel D., Walcott R., Pupko T., Burdman S. (2016): Insights from the genome sequence of Acidovorax citrulli M6, a group I strain of the causal agent of bacterial fruit blotch of cucurbits. Frontier Microbiology, 7: 430. doi: 10.3389/fmicb.2016.00430 https://doi.org/10.3389/fmicb.2016.00430
 
EPPO (2017): EPPO Global Database, Acidovorax citrulli (PSDMAC). Available at https://gd.eppo.int/taxon/PSDMAC
 
Evans T.A., Mulrooney R.P. (1991): First report of watermelon fruit blotch in Delaware. Plant Disease, 75: 1074. doi: 10.1094/PD-75-1074C https://doi.org/10.1094/PD-75-1074C
 
Faulk W.P., Taylor G.M. (1971): Communication to the editors: An immunocolloid method for the electron microscope. Immunochemistry, 8: 1081–1083.
 
Feng J.J., Li J.Q., Walcott R.R., Zhang G.M., Luo L.X., Kang L., Zheng Y., Schaad N.W. (2013): Advances in detection of Acidovorax citrulli, the causal agent of bacterial fruit blotch of cucurbits. Seed Science Technology, 41: 1–15. https://doi.org/10.15258/sst.2013.41.1.01
 
Feng J., Schuenzel E.L., Li J., Schaad N.W. (2009): Multilocus sequence typing reveals two evolutionary lineages of Acidovorax avenae subsp. citrulli. Phytopathology, 99: 913–920. https://doi.org/10.1094/PHYTO-99-8-0913
 
Feng J., Xu Y., Li J., Schaad N. (2006): Comparison of immunostrip and real-time fluorescent PCR (TaqMan) for detection of Acidovorax avenae subsp. citrulli, the causal agent of bacterial fruit blotch of watermelon. Acta Phytopathology Sin, 36: 102–108.
 
Fessehaie A., Walcott R.R. (2005): Biological control to protect watermelon blossoms and seed from infection by Acidovorax avenae subsp. citrulli. Phytopathology, 95: 413–419. https://doi.org/10.1094/PHYTO-95-0413
 
Ghedini R., Fiore N. (1995): The use of polymerase chain reaction to detect latent infection of Clavibacter michiganensis subsp. michiganensis in tomato seedlings. EPPO Bulletin, 25: 449–454. https://doi.org/10.1111/j.1365-2338.1995.tb00578.x
 
Giovanardi D., Sutton S.A., Stefani E., Walcott R.R. (2018): Factors influencing the detection of Acidovorax citrulli in naturally contaminated cucurbitaceous seeds by PCR-based assays. Seed Science Technology, 46: 93–106. https://doi.org/10.15258/sst.2018.46.1.09
 
Gitaitis R.D., Beaver R.W. (1990): Characterization of fatty acid methyl easter content of Clavibacter michiganensis subsp. michiganensis. Phytopathology, 80: 318–321. https://doi.org/10.1094/Phyto-80-318
 
Gitaitis R., Walcott R. (2007): The epidemiology and management of seed borne bacterial diseases. Annual Review Phytopathology, 45: 371–397. https://doi.org/10.1146/annurev.phyto.45.062806.094321
 
Gitaitis R.D. (1993): Development of a seedborne assay for watermelon fruit blotch. In: Proceedings of the First ISTA Plant Disease Committee Symposium on Seed Health Testing. Ottawa, August 9–11, 1993: 9–18.
 
Hampton R., Ball E., Boer S.D. (1990): Serological methods for detection and identification of viral and bacterial plant pathogens: A laboratory manual (No. 581.295 S486). St. Paul, American Phytopathology Society.
 
Harighi B. (2007): Bacterial leaf spot of Christ's thorn,
 
a new disease caused by Acidovorax avenae subsp. citrulli in Iran. Journal of Plant Pathology, 89: 283–285.
 
Himananto O., Thummabenjapone P., Luxananil P., Kumpoosiri M., Hongprayoon R., Kositratana W., Gajanandana O. (2011): Novel and highly specific monoclonal antibody to Acidovorax citrulli and development of ELISA-based detection in cucurbit leaves and seed. Plant Disease, 95: 1172–1178. https://doi.org/10.1094/PDIS-12-10-0889
 
Hodgett J., Hall J., Karamura G., Grant M., Studholme D.J., Boonham N., Karamura E., Smith J.J. (2015): Rapid, specific, simple, in-field detection of Xanthomonas campestris pathovar musacearum by loop-mediated isothermal amplification. Journal of Applied Microbiology, 119: 1651–1658. https://doi.org/10.1111/jam.12959
 
Holeva M.C., Karafla C.D., Glynos P.E., Alivizatos A.S. (2010): Acidovorax avenae subsp. citrulli newly reported to cause bacterial fruit blotch of watermelon in Greece. Plant Pathology, 59: 797. doi: 10.1111/j.1365-3059.2009.02246.x https://doi.org/10.1111/j.1365-3059.2009.02246.x
 
Hopkins D.L. (1992): Chemical control of bacterial fruit blotch of watermelon. Florida State Horticultural Society, 104: 270–272.
 
Hopkins D.L. (1995): The hypothetical exam question becomes reality. Plant Disease, 79: 761–765. https://doi.org/10.1094/PD-79-0761
 
Hopkins D.L. (1991): Control of bacterial fruit blotch of watermelon with cupric hydroxide. Phytopathology, 81: 1228.
 
Hopkins D.L., Cucuzza J.D., Watterson J.C. (1996): Wet seed treatments for the control of bacterial fruit blotch of watermelon. Plant Disease, 80: 529–532. https://doi.org/10.1094/PD-80-0529
 
Hopkins D.L., Thompson C.M. (2002a): Evaluation of Citrullus sp. germ plasm for resistance to Acidovorax avenae subsp. citrulli. Plant Disease, 86: 61–64. https://doi.org/10.1094/PDIS.2002.86.1.61
 
Hopkins D.L., Thompson C.M. (2002b): Seed transmission of Acidovorax avenae subsp. citrulli in cucurbits. HortScience, 37: 924–926. https://doi.org/10.21273/HORTSCI.37.6.924
 
Hopkins D.L., Thompson C.M., Hilgren J., Lovic B. (2003): Wet seed treatment with peroxyacetic acid for the control of bacterial fruit blotch and other seed-borne diseases of watermelon. Plant Disease, 87: 1495–1499. https://doi.org/10.1094/PDIS.2003.87.12.1495
 
Horuz S., Aysan Y. (2018): Biological control of watermelon seedling blight caused by Acidovorax citrulli using antagonistic bacteria from the genera Curtobacterium, Microbacterium and Pseudomonas. Plant Protection Science, 54: 138–146. https://doi.org/10.17221/168/2016-PPS
 
Horuz S., Cetinkaya-Yildiz R., Mirik M., Aysan Y. (2014): Occurrence, isolation, and identification of Acidovorax citrulli from Melon in Turkey. Plant Protection Science, 50:179–183. https://doi.org/10.17221/30/2014-PPS
 
Hui W., Zhao T., Schaad N.W., Sun F., Wang J. (2007): Establishment of rapid detection method for the pathogen of hami melon fruit blotch (in Chinese). Scientia Agricultura Sinica, 40: 2495–2501.
 
Isakeit T., Black M.C., Jones J.B. (1998): Natural infection of citron melon with Acidovorax avenae subsp. citrulli. Plant Disease 82: 351–351. https://doi.org/10.1094/PDIS.1998.82.3.351D
 
Isakeit T., Black M.C., Barnes L.W., Jones J.B. (1997): First report of infection of honeydew with Acidovorax avenae subsp. citrulli. Plant Disease, 81: 694–694. https://doi.org/10.1094/PDIS.1997.81.6.694C
 
Islam M., Hossain M.R., Kim H.T., Jesse D.M.I., Abuyusuf M., Jung H.J., Park J.I., Nou I.S. (2019): Development of molecular markers for detection of Acidovorax citrulli strains causing bacterial fruit blotch disease in melon. International Journal of Molecular Sciences, 20: 2715. doi: 10.3390/ijms20112715 https://doi.org/10.3390/ijms20112715
 
Jackson A.P., Thomas G.H., Parkhill J., Thomson N.R. (2009): Evolutionary diversification of an ancient gene family (rhs) through C-terminal displacement. BMC Genomics, 10: 584. doi: 10.1186/1471-2164-10-584 https://doi.org/10.1186/1471-2164-10-584
 
Jacobs J.L., Damicone J.P., McCraw B.D. (1992): First report of bacterial fruit blotch of watermelon in Oklahoma. Plant Disease, 76: 1185. doi: 10.1094/PD-76-1185D https://doi.org/10.1094/PD-76-1185D
 
Jiang C.H., Wu F., Yu Z.Y., Xie P., Ke H.J., Li H.W., Yu Y.Y., Guo J.H. (2015): Study on screening and antagonistic mechanisms of Bacillus amyloliquefaciens 54 against bacterial fruit blotch (BFB) caused by Acidovorax avenae subsp. citrulli. Microbiology Research, 170: 95–104. https://doi.org/10.1016/j.micres.2014.08.009
 
Jian-Jun F., Kim J.Y., Xi-Li L., Schaad N.W., Jian-Qiang L. (2008): Differentiation of live and dead cell of bacterial plant pathogen in polymerase chain reaction assays using a DNA binding dye. Chemical Journal of Chinese Universities – Chinese, 29: 944–948.
 
Johnson K.L. (2010): Elucidation of the molecular host-pathogen interactions that influence seed-to-seedling transmission of Acidovorax citrulli. [PhD thesis.] Athens, University of Georgia: 194.
 
Jones J.B., Gitaitis R.D., Schaad N.W. (2001): Gram-negative bacteria: Acidovorax and Xylophilus. In: Schaad N.W., Jones J.B., Chen W. (eds): Laboratory Guide for Identification of Plant Pathogenic Bacteria (3rd ed.). St. Paul, APS Press: 121–138.
 
Kang H.W., Park D.S., Go S.J., Eun M.Y. (2002): Fingerprinting of diverse genomes using PCR with universal rice primers generated from repetitive sequence of Korean weedy rice. Molecules and Cells, 13: 281–287.
 
Kong H., Ranalli T., Lemieux B. (2007): New isothermal molecular diagnostics platforms. IVD Technology, 13: 35–43.
 
Kubota M., Hagiwara N., Shirakawa T. (2012): Disinfection of seeds of cucurbit crops infested with Acidovorax citrulli with dry heat treatment. Journal of Phytopathology, 160: 364–368. https://doi.org/10.1111/j.1439-0434.2012.01913.x
 
Kucharek T. (1993): Transmission of the watermelon fruit blotch bacterium from infested seed to seedlings. Phytopathology, 83: 466.
 
Kumagai L.B., Woods P.W., Walcott R., Moua X. (2014): First report of bacterial fruit blotch on melon caused by Acidovorax citrulli in California. Plant Disease, 98: 1423–1423. https://doi.org/10.1094/PDIS-03-14-0286-PDN
 
Kuo S.Y., Lin Y.C., Lai Y.C., Liao J.T., Hsu Y.H., Huang H.C., Hu C.C. (2018): Production of fluorescent antibody-labeling proteins in plants using a viral vector and the application in the detection of Acidovorax citrulli and Bamboo mosaic virus. PloS One, 13:e0192455. doi: 10.1371/journal.pone.0192455 https://doi.org/10.1371/journal.pone.0192455
 
Kurowski C., Conn K., Lutton J., Rosenberger S. (2015): Bacteria fruit blotch. In: Cucurbit Disease Field Guide. Cambridge, Monsanto Vegetable Seeds/Seminis/DeReuter: 10–11.
 
Langston Jr D.B., Walcott R.D., Gitaitis R.D., Sanders Jr F.H. (1999): First report of a fruit rot of pumpkin caused by Acidivorax avenae subsp. citrulli in Georgia. Plant Disease, 83: 199–199. https://doi.org/10.1094/PDIS.1999.83.2.199B
 
Latin R.X., Hopkins D.L. (1995): Bacterial fruit blotch of watermelon. The hypothetical exam question becomes reality. Plant Disease, 79: 761–765. https://doi.org/10.1094/PD-79-0761
 
Latin R.X., Rane K.K. (1990): Bacterial fruit blotch of watermelon in Indiana. Plant Disease, 74: 331.doi. 10.1094/PD-74-0331B https://doi.org/10.1094/PD-74-0331B
 
Lee H., Kim M.S., Qin J., Park E., Song Y.R., Oh C.S., Cho B.K. (2017): Raman hyperspectral imaging for detection of watermelon seeds infected with Acidovorax citrulli. Sensors, 17: 2188. doi: 10.3390/s17102188 https://doi.org/10.3390/s17102188
 
Lessl J.T., Fessehaie A., Walcott R.R. (2007): Colonization of female watermelon blossoms by Acidovorax avenae ssp. citrulli and the relationship between blossom inoculum dosage and seed infestation. Journal of Phytopathology, 155: 114–121. https://doi.org/10.1111/j.1439-0434.2007.01204.x
 
Li B., Shi Y., Shan C., Zhou Q., Ibrahim M., Wang Y., Wu G., Li H., Xie G., Sun G. (2013): Effect of chitosan solution on the inhibition of Acidovorax citrulli causing bacterial fruit blotch of watermelon. Journal of The Science of Food and Agriculture, 93: 1010–1015. https://doi.org/10.1002/jsfa.5812
 
Lu X., Al-Qadiri H.M., Lin M., Rasco B.A. (2011): Application of mid-infrared and Raman spectroscopy to the study of bacteria. Food and Bioprocess Technology, 4: 919–935. https://doi.org/10.1007/s11947-011-0516-8
 
Maiden M.C. (2006): Multilocus sequence typing of bacteria. Annual Revision of Microbiology, 60: 561–588. https://doi.org/10.1146/annurev.micro.59.030804.121325
 
Martin H.L., Horlock C.M. (2002): First report of Acidovorax avenae subsp. citrulli as a pathogen of Gramma in Australia. Plant Disease, 86: 1406–1406. https://doi.org/10.1094/PDIS.2002.86.12.1406A
 
Martin H.L., O'Brien R.G., Abbott D.V. (1999): First report of Acidovorax avenae subsp. citrulli as a pathogen of cucumber. Plant Disease, 83: 965–965. https://doi.org/10.1094/PDIS.1999.83.10.965D
 
Matsuura T., Shirakawa T., Sato M., Inoue Y., Azegami K. (2008): Detection and isolation of Acidovorax avenae subsp. citrulli from watermelon (Citrullus lanatus) seeds using membrane filtration immunostaining. Japanese Journal Phytopathology, 74: 153–156. https://doi.org/10.3186/jjphytopath.74.153
 
Melo L.A., Tebaldi N.D., Mehta A., Marques A.S. (2014): Comparing Acidovorax citrulli strains from melon and watermelon: Phenotypic characteristics, pathogenicity and genetic diversity. Tropical Plant Pathology 39: 154–162. https://doi.org/10.1590/S1982-56762014000200006
 
Mori Y., Notomi T. (2009): Loop-mediated isothermal amplification (LAMP): A rapid, accurate, and cost-effective diagnostic method for infectious diseases. Journal of Infection and Chemotherapy, 15: 62–69. https://doi.org/10.1007/s10156-009-0669-9
 
Nilsson M., Malmgren H., Samiotaki M., Kwiatkowski M., Chowdhary B.P., Landegren U. (1994): Padlock probes: Circularizing oligonucleotides for localized DNA detection. Science, 265: 2085–2088. https://doi.org/10.1126/science.7522346
 
Niu K., Zheng X., Huang C., Xu K., Zhi Y., Shen H., Jia N. (2014): A colloidal gold nanoparticle-based immunochromatographic test strip for rapid and convenient detection of Staphylococcus aureus. Journal of Nanoscience and Nanotechnology, 14: 5151–5156. https://doi.org/10.1166/jnn.2014.8703
 
Nogva H.K., Drømtorp S.M., Nissen H., Rudi K. (2003): Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5'-nuclease PCR. Biotechniques, 34: 804–813. https://doi.org/10.2144/03344rr02
 
Noller A.C., McEllistrem M.C., Stine O.C., Morris Jr J.G., Boxrud D.J., Dixon B., Harrison L.H. (2003): Multilocus sequence typing reveals a lack of diversity among Escherichia coli O157: H7 isolates that are distinct by pulsed-field gel electrophoresis. Journal of Clinical Microbiology, 41: 675–679. https://doi.org/10.1128/JCM.41.2.675-679.2003
 
Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N., Hase T. (2000): Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28: e63. doi: 10.1093/nar/28.12.e63 https://doi.org/10.1093/nar/28.12.e63
 
O'Brien R.G., Martin H.L. (1999): Bacterial blotch of melons caused by strains of Acidovorax avenae subsp. citrulli. Australian Journal Experimental Agriculture, 39: 479–485. https://doi.org/10.1071/EA98172
 
Olsvik O., Popovic T., Skjerve E., Cudjoe K.S., Hornes E., Ugelstad J., Uhlen M. (1994): Magnetic separation techniques in diagnostic microbiology. Clinical Microbiology Reviews, 7: 43–54. https://doi.org/10.1128/CMR.7.1.43
 
Oya H., Nakagawa H., Saito N., Uematsu H., Ohara T. (2008): Detection of Acidovorax avenae subsp. citrulli from seed using LAMP method. Japanese Journal of Phytopathology, 74: 304–310. https://doi.org/10.3186/jjphytopath.74.304
 
Palkovics L., Petróczy M., Kertészm B., Németh J., Bársony C., Mike Z., Hevesi M. (2008): First report of bacterial fruit blotch of watermelon caused by Acidovorax avenae subsp. citrulli in Hungary. Plant Disease, 92: 834–834. https://doi.org/10.1094/PDIS-92-5-0834C
 
Park H.J., Seong H.J., Sul W.J., Oh C.S., Han S.W. (2017): Complete genome sequence of Acidovorax citrulli strain KACC17005, a causal agent for bacterial fruit blotch on watermelon. Korean Journal of Microbiology, 53: 340–341.
 
Peeters C., Meier-Kolthoff J.P., Verheyde B., De Brandt E., Cooper V.S., Vandamme P. (2016): Phylogenomic study of Burkholderia glathei-like organisms, proposal of 13 novel Burkholderia species and emended descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae. Frontiers in Microbiology, 7: 877. doi: 10.3389/fmicb.2016.00877 https://doi.org/10.3389/fmicb.2016.00877
 
Popović T., Ivanović Ž. (2015): Occurrence of Acidovorax citrulli causing bacterial fruit blotch of watermelon in Serbia. Plant Disease, 99: 886–886. https://doi.org/10.1094/PDIS-12-14-1276-PDN
 
Puttharugsa C., Wangkam T., Huangkamhang N., Gajanandana O., Himananto O., Sutapun B., Amarit R., Somboonkaew A., Srikhirin T. (2011): Development of surface plasmon resonance imaging for detection of Acidovorax avenae subsp. citrulli (Aac) using specific monoclonal antibody. Biosensors and Bioelectronics, 26: 2341–2346. https://doi.org/10.1016/j.bios.2010.10.007
 
Qin J., Chao K., Kim M.S., Lu R., Burks T.F. (2013): Hyperspectral and multispectral imaging for evaluating food safety and quality. Journal of Food Engineering, 118: 157–171. https://doi.org/10.1016/j.jfoodeng.2013.04.001
 
Rahimi-Midani A., Lee Y.S., Kang S.W., Kim M.K., Choi T.J. (2018): First isolation and molecular characterization of bacteriophages infecting Acidovorax citrulli, the causal agent of bacterial fruit blotch. Plant Pathology Journal, 34: 59. doi: 10.5423/PPJ.NT.08.2017.0190 https://doi.org/10.5423/PPJ.NT.08.2017.0190
 
Rampadarath S., Puchooa D., Bal S. (2015): Repetitive element palindromic PCR (rep-PCR) as a genetic tool to study interspecific diversity in Euphorbiaceae family. Electronic Journal of Biotechnology, 18: 412–417. https://doi.org/10.1016/j.ejbt.2015.09.003
 
Rane K.K., Latin R.X. (1992): Bacterial fruit blotch of watermelon: Association of the pathogen with seed. Plant Disease, 76: 509–512. https://doi.org/10.1094/PD-76-0509
 
Ren Y.Z., Li H., Li G.Y., Wang Q.Y., Li J.Q. (2006): First report of Acidovorax avenae subsp. citrulli infecting edible seed watermelon (Citrullus lanatus var. lanatus) in China. Plant Disease, 90: 1112–1112. https://doi.org/10.1094/PD-90-1112A
 
Ribot E.M., Fair M.A., Gautom R., Cameron D.N., Hunter S.B., Swaminathan B., Barrett T.J. (2006): Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157: H7, Salmonella, and Shigella for PulseNet. Foodbourne Pathogens & Disease, 3: 59–67.
 
Rui S., Qing L., Yali L., Zhaohui W., Junping W., Liping Z., Jianxiong H., Zhijie L. (2009): Rapid immuno-PCR detection of Acidovorax avenae subsp. citrulli. Plant Quar, 2.
 
Sano T., Smith C.L., Cantor C.R. (1992): Immuno-PCR: Very sensitive antigen detection by means of specific antibody-DNA conjugates. Science, 258: 120–122. https://doi.org/10.1126/science.1439758
 
Scally M., Schuenzel E.L., Stouthamer R., Nunney L. (2005): Multilocus sequence type system for the plant pathogen Xylella fastidiosa and relative contributions of recombination and point mutation to clonal diversity. Applied and Environmental Microbiology, 71: 8491–8499. https://doi.org/10.1128/AEM.71.12.8491-8499.2005
 
Schaad N.W., Cheong S.S., Tamaki S., Hatziloukas E., Panopoulos N.J. (1995): A combined biological and enzymatic amplification (BIO-PCR) technique to detect Pseudomonas syringae pv. phaseolicola in bean seed extracts. Phytopathology, 85: 243–246. https://doi.org/10.1094/Phyto-85-243
 
Schaad N.W., Postnikova E. Randhawa P.S. (2003): Emergence of Acidovorax avenae subsp. citrulli as a crop threatening disease of watermelon and melon. In: Iacobellis N.S., Collmer A., Hutcheson S.W., Mansfield J.W., Morris C.E., Murillo J., Schaad N.W., Stead D.E., Surico G., Ullrich M.S. (eds): Pseudomonas syringae and Related Pathogens. Dordrecht, Kluwer Academic Publishers: 573–581
 
Schaad N.W., Postnikova E., Sechler A., Claflin L.E., Vidaver A.K., Jones J.B., Agarkova I., Ignatov A., Dickstein E., Ramundo B.A. (2008): Reclassification of subspecies of Acidovorax avenae as A. Avenae (Manns 1905) emend., A. cattleyae (Pavarino, 1911) comb. nov., A. citrulli Schaad et al., 1978) comb. nov., and proposal of A. oryzae sp. nov. Systematic and Applied Microbiology, 31: 434–446. https://doi.org/10.1016/j.syapm.2008.09.003
 
Schaad N.W., Sechler A. (1999): An improved semi selective agar medium for Acidovorax avenae subsp. citrulli. Phytopathology, 89: S68–S69.
 
Schaad N.W., Sowell Jr G., Goth R.W., Colwell R.R., Webb R.E. (1978): Pseudomonas pseudoalcaligenes subsp. citrulli subsp. nov. International Journal of Systematic and Evolutionary Microbiology, 28:117–125.
 
Schmid E.D. (1978): Proceedings of the 6th International Conference on Raman Spectroscopy. Bangalore, Sept 4–9, 1978: 419.
 
Selander R.K., Caugant D.A., Ochman H., Musser J.M., Gilmour M.N., Whittam T.S. (1986): Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Applied and Environmental Microbiology, 51: 873–884. https://doi.org/10.1128/AEM.51.5.873-884.1986
 
Sharma A., Katoch V., Rana C. (2016): 18 important diseases of Cucurbitaceous crops and their management. In: Pessarakli M. (ed.): Handbook of Cucurbits Growth, Cultural Practices and Physiology. Edition: first Chapter: 18. Boca Raton, CRC Press: 301–320.
 
Sharma-Kuinkel B.K., Rude T.H., Fowler Jr V.G. (2016): Pulse field gel electrophoresis. Methods in Molecular Biology, 1373: 117–130.
 
Shimizu Y., Uemastu H., Takahashi N., Hirata T., Tenpaku M., Nakamura (2008): Efficiency test of bactericides for disease caused by Acidovorax avenae [Pseudomonas avenae] subsp. citrulli. Research Bulletin of the Plant Protection Service (Japan), 44: 31–32.
 
Shirakawa T., Kikuchi S., Kato T., Abiko K., Kawai A. (2000): Occurrence of watermelon bacterial fruit blotch in Japan. Japanese Journal of Phytopathology, 66: 223–231. https://doi.org/10.3186/jjphytopath.66.223
 
Slovareva O.Y., Kornev K.P., Matyashova G.N., Stakheev A.A., Prikhodk S.I. (2019): Recommended procedure for detection and identification Acidovorax citrulli in seeds. AIP conference proceedings (Vol. 2063, No. 1, p. 030020). AIP Publishing LLC. https://doi.org/10.1063/1.5087328
 
Somodi G.C., Jones J.B., Hopkins D.L., Stall R.E., Kucharek T.A., Hodge N.C., Watterson J.C. (1991): Occurrence of a bacterial watermelon fruit blotch in Florida. Plant Disease, 75: 53–61. https://doi.org/10.1094/PD-75-1053
 
Song J.Y., Oo M.M., Park S.Y., Seo M.W., Lee S.C., Jeon N.B., Nam M.H., Lee Y.S., Kim H.G., Oh S.K. (2018): Analysis of intraspecific genetic diversity in Acidovorax citrulli causing bacterial fruit blotch on cucurbits in Korea. Korean Journal of Agricultural Sciencee, 45: 575–582.
 
Song W.Y., Kim H.M., Hwang C.Y., Schaad N.W. (2004): Detection of Acidovorax avenae ssp. avenae in rice seeds using BIO-PCR. Journal of Phytopathology, 152: 667–676. https://doi.org/10.1111/j.1439-0434.2004.00914.x
 
Song W.Y., Kim H.M., So I.Y., Kang Y.K. (1991): Pseudomonas pseudoalcaligenes subsp. citrulli: The causal agent of bacterial fruit blotch rot on watermelon. Plant Pathology Journal, 7: 177–182.
 
Sowell Jr G., Schaad N.W. (1979): Pseudomonas pseudoalcaligenes subsp. citrulli on watermelon: seed transmission and resistance of plant introductions. Plant Disease Reporter, 63: 437–441.
 
Sowell G. (1981): A bacterial disease causing severe damage to susceptible plant introductions of muskmelon. Plant Disease, 65: 609–610. https://doi.org/10.1094/PD-65-609
 
Steiner G. (2004): Surface plasmon resonance imaging. Analytical and Bioanalytical Chemistry. 379: 328–331. https://doi.org/10.1007/s00216-004-2636-8
 
Stephens D.J., Schneider R.W., Walcott R., Johnson C.E. (2008): A procedure, based on exposure to chlorine gas, for disinfesting watermelon seeds. Phytopathology, 98: 150–151.
 
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. (2011): MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28: 2731–2739. https://doi.org/10.1093/molbev/msr121
 
Tian Q., Feng J.J., Hu J., Zhao W.J. (2016): Selective detection of viable seed-borne Acidovorax citrulli by real-time PCR with propidium monoazide. Scientific Reports, 6: 35457. doi: 10.1038/srep35457 https://doi.org/10.1038/srep35457
 
Tian Y.L., Zhao Y.Q., Hu B.S., Liu F.Q. (2013a): First report of seedling blight of watermelon caused by Acidovorax citrulli transmitted from rootstock of pumpkin in China. Plant Disease, 97: 420–420.
 
Tian Y., Zhao Y., Bai S., Walcott R.R., Hu B., Liu F. (2013b): Reliable and sensitive detection of Acidovorax citrulli in cucurbit seed using a padlock-probe-based assay. Plant Disease, 97: 961–966. https://doi.org/10.1094/PDIS-10-12-0930-RE
 
Tomlinson J.A., Ostoja-Starzewska S., Adams I.P., Miano D.W., Abidrabo P., Kinyua Z., Alicai T., Dickinson M.J., Peters D., Boonham N., Smith J. (2013): Loop-mediated isothermal amplification for rapid detection of the causal agents of cassava brown streak disease. Journal of Virological Methods, 191: 148–154. https://doi.org/10.1016/j.jviromet.2012.07.015
 
Traore S.M. (2014): Characterization of type three effector genes of A. citrulli, the causal agent of bacterial fruit blotch of cucurbits [PhD thesis.] Blacksburg, Virginia Polytechnic Institute and State University: 146.
 
Venette J.R., Lamppa R.S., Albaugh D.A., Nayes J.B. (1987): Presumptive procedure (dome test) for detection of seed borne bacterial pathogens in dry beans. Plant Disease, 71: 984–990. https://doi.org/10.1094/PD-71-0984
 
Walcott R.R. (2008): Integrated pest management of bacterial fruit blotch of cucurbits. In: Integrated Management of Diseases Caused by Fungi, Phytoplasma and Bacteria. Dordrecht, Springer: 191–2019.
 
Walcott R.R., Castro A.C., Fessehaie A., Ling K.S. (2006): Progress towards a commercial PCR-based seed assay for Acidovorax avenae subsp. citrulli. Seed Science and Technology, 34: 101–116. https://doi.org/10.15258/sst.2006.34.1.11
 
Walcott R.R., Fessehaie A., Castro A.C. (2004): Differences in pathogenicity between two genetically distinct groups of Acidovorax avenae subsp. citrulli on cucurbit hosts. Journal of Phytopathology, 152: 277–285. https://doi.org/10.1111/j.1439-0434.2004.00841.x
 
Walcott R.R., Gitaitis R.D. (2000): Detection of Acidovorax avenae subsp. citrulli in watermelon seed using immunomagnetic separation and the polymerase chain reaction. Plant Disease, 84: 470–474. https://doi.org/10.1094/PDIS.2000.84.4.470
 
Walcott R.R., Langston Jr D.B., Sanders Jr F.H., Gitaitis R.D., Flanders J.T. (2000): Natural outbreak of a bacterial fruit rot of cantaloupe in Georgia caused by Acidovorax avenae subsp. citrulli. Plant Disease, 84:372–372. https://doi.org/10.1094/PDIS.2000.84.3.372D
 
Wall G.C., Santos V.M. (1988): A new bacterial disease on watermelon in the Mariana Islands. Phytopathology, 78: 1–9.
 
Wang S., Levin R.E. (2006): Discrimination of viable Vibrio vulnificus cells from dead cells in real-time PCR. Journal of Microbiology Methods, 64: 1–8. https://doi.org/10.1016/j.mimet.2005.04.023
 
Wang T., Sun B., Yang Y., Zhao T. (2015a): Genome sequence of Acidovorax citrulli group 1 strain pslb65 causing bacterial fruit blotch of melons. Genome Announcement, 3: e00327-15. doi: 10.1128/genomeA.00327-15 https://doi.org/10.1128/genomeA.00327-15
 
Wang T., Yang Y., Zhao T. (2015b): Genome sequence of a copper-resistant strain of Acidovorax citrulli causing bacterial fruit blotch of melons. Genome Announcement, 3: e00310-15. doi: 10.1128/genomeA.00310-15. https://doi.org/10.1128/genomeA.00310-15
 
Wang Y., Zhou Q., Li B., Liu B., Wu G., Ibrahim M., Xie G., Li H., Sun G. (2012): Differentiation in MALDI-TOF MS and FTIR spectra between two closely related species Acidovorax oryzae and Acidovorax citrulli. BMC Microbiology, 12: 182. doi: 10.1186/1471-2180-12-182 https://doi.org/10.1186/1471-2180-12-182
 
Wang Z., Hu J. (2005): Preliminary research on serological method for detecting fruit blotch bacterium in hemi melon seed. Journal of Inner Mongolia Agricultural University (Natural Science Edition) 26: 20–23.
 
Webb R.E., Goth R.W. (1965): A seed borne bacterium isolated from watermelon. Plant Disease Reporter 49: 818–821.
 
Welch D.F. (1991): Applications of cellular fatty acid analysis. Clinical Microbiology Reviews, 4: 422–438. https://doi.org/10.1128/CMR.4.4.422
 
Wen A., Mangravita-Novo A., Hopkins D.L., Norman D.J. (2008): Genetic characterization of Acidovorax avenae subsp. citrulli using amplified fragment length polymorphism (AFLP). In Phytopathology, 98: 169–169.
 
Wen Z.Q. (2007): Raman spectroscopy of protein pharmaceuticals. Journal of Pharmaceutical Sciences, 96: 2861–2878. https://doi.org/10.1002/jps.20895
 
Whatmore A.M., Koylass M.S., Muchowski J., Edwards-Smallbone J., Gopaul K.K., Perrett L.L. (2016): Extended multilocus sequence analysis to describe the global population structure of the genus Brucella: Phylogeography and relationship to biovars. Frontiers in Microbiology, 7: 2049. doi: 10.3389/fmicb.2016.02049 https://doi.org/10.3389/fmicb.2016.02049
 
Willems A., Goor M., Thielemans S., Gillis M., Kersters K., De Ley J. (1992): Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci. International Journal of Systematic and Evolutionary Microbiology 42:107–119.
 
Xu F.S., Wang X., Xie G.L., Su T., Yu S.H. (2008): Detection of Acidovorax avenae subsp. citrulli from seeds of watermelon by immuno-capture PCR. Journal of Fruit Science, 25: 215–218.
 
Xu G., Hu L., Zhong H., Wang H., Yusa S.I., Weiss T.C., Romaniuk P.J., Pickerill S., You Q. (2012): Cross priming amplification: mechanism and optimization for isothermal DNA amplification. Scientific Reports, 2: 246. doi: 10.1038/srep00246 https://doi.org/10.1038/srep00246
 
Yan L., Zhao Y., Zhou J., Chen S., Bai S., Tian Y., Gong W., Hu B. (2019): Rapid and sensitive detection of Acidovorax citrulli in cucurbit seeds by visual loop-mediated isothermal amplification assay. Journal of Phytopathology, 167: 10–18. https://doi.org/10.1111/jph.12767
 
Yan S., Yang Y., Wang T., Zhao T., Schaad N.W. (2013): Genetic diversity analysis of Acidovorax citrulli in China. European Journal of Plant Pathology, 136: 171–181. https://doi.org/10.1007/s10658-012-0152-9
 
Zeng H., Guo W., Liang B., Li J., Zhai X., Song C., Zhao W., Fan E., Liu Q. (2016): Self-paired monoclonal antibody lateral flow immunoassay strip for rapid detection of Acidovorax avenae subsp. citrulli. Analytical and Bioanalytical Chemistry, 408: 6071–6078. https://doi.org/10.1007/s00216-016-9715-5
 
Zeng H., Zhang D., Zhai X., Wang S., Liu Q. (2018): Enhancing the immunofluorescent sensitivity for detection of Acidovorax citrulli using fluorescein isothiocyanate labelled antigen and antibody. Analytical and Bioanalytical Chemistry, 410: 71–77. https://doi.org/10.1007/s00216-017-0690-2
 
Zhan Y., Xu Q., Yang M.M., Yang H.T., Liu H.X., Wang Y.P., Guo J.H. (2012): Screening of freeze-dried protective agents for the formulation of biocontrol strains, Bacillus cereus AR156, Burkholderia vietnamiensis B418 and Pantoea agglomerans 2Re40. Letters in Applied Microbiology, 54: 10–17. https://doi.org/10.1111/j.1472-765X.2011.03165.x
 
Zhang J., Tian Q., Zhu S.F., Zhao W.J., Liu F.Q. (2012): Rapid on-site detection of Acidovorax citrulli by cross-priming amplification. Molecular and Cellular Probes, 26:175–176. https://doi.org/10.1016/j.mcp.2012.03.010
 
Zhang R., Tan Z., Wen Y., Zhang H., Jian R. (1998): Description and identification of the causal organism of bacterial fruit blotch of watermelon. Chinese Journal of Tropical Crops 19: 70–76.
 
Zhao L., Wang X., Xie G., Xu F., Xie G. (2006): Detection of pathogen of bacterial fruit blotch of watermelon by immuno-PCR (in Chinese). Journal of Agriculture Biotechnology, 6: 120–125.
 
Zhao T., Feng J., Sechler A., Randhawa P., Li J., Schaad N.W. (2009): An improved assay for detection of Acidovorax citrulli in watermelon and melon seed. Seed Science and Technology, 37: 337–349. https://doi.org/10.15258/sst.2009.37.2.08
 
Zhao T., Sun F., Wang B., Hui W. (2001): Pathogen identification of Hami melon bacterial fruit blotch. Acta Phytopathologica Sinica, 31: 357–364.
 
Zivanovic M., Walcott R.R. (2017): Further characterization of genetically distinct groups of Acidovorax citrulli strains. Phytopathology, 107:–29–35. https://doi.org/10.1094/PHYTO-06-16-0245-R
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti