Abbott W.S. (1925): A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265–267.
https://doi.org/10.1093/jee/18.2.265a
Azizoglu U. (2019): Bacillus thuringiensis as a biofertilizer and biostimulator: A mini-review of the little-known plant growth-promoting properties of Bt. Current Microbiology, 76: 1379–1385.
https://doi.org/10.1007/s00284-019-01705-9
Balaraman K. (2005): Occurrence and diversity of mosquitocidal strains of Bacillus thuringiensis. Journal of Vector Borne Diseases, 42: 81–86.
Beron C.M., Curatti L., Salerno G.L. (2005): New strategy for identification of novel cry-type genes from Bacillus thuringiensis strains. Applied and Environmental Microbiology Journal, 71: 761–765.
https://doi.org/10.1128/AEM.71.2.761-765.2005
Betz F.S., Hammond B.G., Fuchs R.L. (2000): Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regulatory Toxicology and Pharmacology, 32: 156–173.
https://doi.org/10.1006/rtph.2000.1426
Binh N.D., Chau N.Q., Thuong N.V., Nguyet N.A., Cuong T.T., Jamil J.M., Tri N.D.A., Tram N.H. (2000): Study on the distribution and biodiversity of Bacillus thuringiensis isolated from several provinces in Vietnam. In: Proceedings of the National Biological Conference "Issues of basic research in biology": 484–488.
Bradford M.M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248–254.
https://doi.org/10.1016/0003-2697(76)90527-3
Bravo A., Gill S.S., Soberon M. (2007): Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49: 423–435.
https://doi.org/10.1016/j.toxicon.2006.11.022
Chattopadhyay A., Bhatnagar N.B., Bhatnagar R. (2004): Bacterial insecticidal toxins. Critical Reviews in Microbiology, 30: 33–54.
https://doi.org/10.1080/10408410490270712
Crickmore N., Zeigler D.R., Feitelson J., Schnepf E., Van Rie J., Lereclus D., Baum J., Dean D.H. (1998): Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62: 807–813.
https://doi.org/10.1128/MMBR.62.3.807-813.1998
Dankocsik C., Donovan W.P., Jany C.S. (1990): Activation of a cryptic crystal protein gene of Bacillus thuringiensis subspecies kurstaki by gene fusion and determination of the crystal protein insecticidal specificity. Molecular Microbiology, 4: 2087–2094.
https://doi.org/10.1111/j.1365-2958.1990.tb00569.x
Elleuch J., Jaoua S., Ginibre C., Chandre F., Tounsi S., Zghal R.Z. (2016): Toxin stability improvement and toxicity increase against dipteran and lepidopteran larvae of Bacillus thuringiensis crystal protein Cry2Aa. Pest Management Science, 72: 2240–2246.
https://doi.org/10.1002/ps.4261
Fujimoto H., Itoh K., Yamamoto M., Kyozuka J., Shimamoto K. (1993): Insect resistant rice generated by introduction of a modified delta-endotoxin gene of Bacillus thuringiensis. Bio/Technology, 11: 1151–1155.
Gouffon C., Van Vliet A., Van Rie J., Jansens S., Jurat-Fuentes J.L. (2011): Binding sites for Bacillus thuringiensis Cry2Ae toxin on heliothine brush border membrane vesicles are not shared with Cry1A, Cry1F, or Vip3A toxin. Applied and Environmental Microbiology, 77: 3182–3188.
https://doi.org/10.1128/AEM.02791-10
Gurevich A., Saveliev V., Vyahhi N., Tesler G. (2013): QUAST: Quality assessment tool for genome assemblies. Bioinformatics, 29: 1072–1075.
https://doi.org/10.1093/bioinformatics/btt086
Hang P.L.B., Linh N.N., Ha N.H., Dong N.V., Hien L.T.T. (2021): Genome sequence of a Vietnamese Bacillus thuringiensis strain TH19 reveals two potential insecticidal crystal proteins against Etiella zinckenella larvae. Biological Control, 152: 104473. doi: 10.1016/j.biocontrol.2020.104473
https://doi.org/10.1016/j.biocontrol.2020.104473
Heckel D.G. (2020): How do toxins from Bacillus thuringiensis kill insects? An evolutionary perspective. Archives of Insect Biochemistry and Physiology, 104: e21673. doi: 10.1002/arch.21673
https://doi.org/10.1002/arch.21673
Hire R.S., Makde R.D., Dongre T.K., D’Souza S.F. (2009): Expression, purification and characterization of the Cry2Aa14 toxin from Bacillus thuringiensis subsp. kenyae. Toxicon, 54: 519–524.
https://doi.org/10.1016/j.toxicon.2009.05.022
Laemmli U.K. (1970): Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680–685.
https://doi.org/10.1038/227680a0
Lazarte N., Valacco M., Moreno S., Salerno G., Berón C. (2021): Molecular characterization of a Bacillus thuringiensis strain from Argentina, toxic against Lepidoptera and Coleoptera, based on its whole-genome and Cry protein analysis. Journal of Invertebrate Pathology, 183: 107563. doi: 10.1016/j.jip.2021.107563
https://doi.org/10.1016/j.jip.2021.107563
Lima G.M.S., Aguiar R.W.S., Corrêa R.F.T., Martins E.S., Gomes A.C.M., Nagata T. (2008): Cry2A toxins from Bacillus thuringiensis expressed in insect cells are toxic to two lepidopteran insects. World Journal of Microbiology and Biotechnology, 24: 2941. doi: 10.1007/s11274-008-9836-x
https://doi.org/10.1007/s11274-008-9836-x
Mayjonade B., Gouzy J., Donnadieu C., Pouilly N., Marande W., Callot C., Langlade N., Munos S. (2016): Extraction of high-molecular-weight genomic DNA for long-read sequencing of single molecules. Biotechniques, 61: 203–205.
https://doi.org/10.2144/000114460
Naveenarani M., Suresha G.S., Srikanth J., Hari K., Sankaranarayanan C., Mahesh P., Nirmala R., Swathik C.P., Crickmore N., Bakshi Ram, Appunu C., Singaravelu B. (2022): Whole genome analysis and functional characterization of a novel Bacillus thuringiensis (Bt 62) isolate against sugarcane white grub Holotrichia serrata (F). Genomics, 114: 185–195.
https://doi.org/10.1016/j.ygeno.2021.12.012
Noguera P.A., Ibarra J.E. (2010): Detection of new cry genes of Bacillus thuringiensis by use of a novel PCR primer system. Applied and Environmental Microbiology, 76: 6150–6155.
https://doi.org/10.1128/AEM.00797-10
Pacheco S., Gómez I., Chiñas M., Sánchez J., Soberón M., Bravo A. (2021): Whole genome sequencing analysis of Bacillus thuringiensis GR007 reveals multiple pesticidal protein genes. Frontiers in Microbiology, 12: 758314. doi: 10.3389/fmicb.2021.758314
https://doi.org/10.3389/fmicb.2021.758314
Palma L., Munoz D., Berry C., Murillo J., Caballero P. (2014): Draft genome sequences of two Bacillus thuringiensis strains and characterization of a putative 41.9-kDa insecticidal toxin. Toxins, 6: 1490–1504.
https://doi.org/10.3390/toxins6051490
Pham V.T., Ho T.T., Phan H.T., Le T.H., Pham N.B., Conrad U. (2019): A plant-based artificial haemagglutinin (A/H5N1) strongly induced neutralizing immune responses in mice. Applied Sciences, 9: 4605. doi: 10.3390/app9214605
https://doi.org/10.3390/app9214605
Ragni A., Thiery I., Deleclus A. (1996): Characterization of six highly mosquitocidal Bacillus thuringiensis strains that do not belong to H-14 serotype. Current Microbiology, 32: 48–54.
https://doi.org/10.1007/s002849900009
Sajid M., Geng C., Li M., Wang Y., Liu H., Zheng J., Peng D., Sun M. (2018): Whole-genome analysis of Bacillus thuringiensis revealing partial genes as a source of novel Cry toxins. Applied and Environmental Microbiology, 84: e00277-18. doi: 10.1128/AEM.00277-18
https://doi.org/10.1128/AEM.00277-18
Saleem F., Shakoori A.R. (2017): The first Cry2Ac-type protein toxic to Helicoverpa armigera: Cloning and overexpression of Cry2ac7 gene from SBS-BT1 strain of Bacillus thuringiensis. Toxins, 9: 358. doi: 10.3390/toxins9110358
https://doi.org/10.3390/toxins9110358
Sayyed A.H., Haward R., Herrero S., Ferre J., Wright D.J. (2000): Genetic and biochemical approach for characterization of resistance to Bacillus thuringiensis toxin Cry1Ac in a field population of the diamondback moth, Plutella xylostella. Applied and Environmental Microbiology, 66: 1509–1516.
https://doi.org/10.1128/AEM.66.4.1509-1516.2000
Sevim A., Eryuzlu E., Demirbag Z., Demir I. (2012): A novel cry2Ab gene from the indigenous isolate Bacillus thuringiensis subsp. kurstaki. Journal of Microbiolog and Biotechnology, 22: 133–140.
https://doi.org/10.4014/jmb.1108.08061
Simão F.A., Waterhouse R.M., Ioannidis P., Kriventseva E.V., Zdobnov E.M. (2015): BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31: 3210–3212.
https://doi.org/10.1093/bioinformatics/btv351
Soheir F.A.E.R., Eman I.A.w. (2020): Efficiency of certain bio-insecticides for reducing the yield losses due to the bean pod borer, Etiella zinckenella (Treitschke) in soybean fields. Journal of Plant Protection and Pathology, 11: 29–36.
https://doi.org/10.21608/jppp.2020.79160
Tabashnik B.E., Van Rensburg J.B., Carriere Y. (2009): Field-evolved insect resistance to Bt crops: Definition, theory, and data. Journal of Economic Entomology, 102: 2011–2025.
https://doi.org/10.1603/029.102.0601
Waterhouse R.M., Seppey M., Simao F.A., Manni M., Ioannidis P., Klioutchnikov G., Kriventseva E.V., Zdobnov E.M. (2018): BUSCO applications from quality assessments to gene prediction and phylogenomics. Molecular Biology and Evolution, 35: 543–548.
https://doi.org/10.1093/molbev/msx319
Wattam A.R., Brettin T., Davis J.J., Gerdes S., Kenyon R., Machi D., Mao C., Olson R., Overbeek R., Pusch G.D., Shukla M.P., Stevens R., Vonstein V., Warren A., Xia F., Yoo H. (2018): Assembly, annotation, and comparative genomics in PATRIC, the all bacterial bioinformatics resource center. Methods in Molecular Biology, 1704: 79–101.
Wu Y. (2014): Chapter six – Detection and mechanisms of resistance evolved in insects to cry toxins from Bacillus thuringiensis. In: Dhadialla T.S., Gill S.S. (eds). Advances in Insect Physiology. Cambridge, Academic Press:297–342.
Xu C., Wang B.C., Yu Z., Sun M. (2014): Structural insights into Bacillus thuringiensis Cry, Cyt and parasporin toxins. Toxins, 6: 2732–2770.
https://doi.org/10.3390/toxins6092732
Ye W., Zhu L., Liu Y., Crickmore N., Peng D., Ruan L., Sun M. (2012): Mining new crystal protein genes from Bacillus thuringiensis on the basis of mixed plasmid-enriched genome sequencing and a computational pipeline. Applied and Environmental Microbiology, 78: 4795–4801.
https://doi.org/10.1128/AEM.00340-12
Zhizhen P., Lian X., Yujing Z., Huai S., Zheng C., Meichun C., Qingxi C., Bo L. (2014): Characterization of a new cry2Ab gene of Bacillus thuringiensis with high insecticidal activity against Plutella xylostella L. World Journal of Microbiology and Biotechnology, 30: 2655–2662.
https://doi.org/10.1007/s11274-014-1689-x