Detection of a novel Cry2Ab toxin against Etiella zinckenella Treitschke from the Bacillus thuringiensis serovar canadensis SP142 strain

https://doi.org/10.17221/59/2021-PPSCitation:

Le Thu N., Le Thi Minh T., Pham Bich N., Trinh Thi Thu H., Dong Van Q., Ngo Dinh B., Chu Hoang H., Hoang H., Nguyen Van D. (2022): Detection of a novel Cry2Ab toxin against Etiella zinckenella Treitschke from the Bacillus thuringiensis serovar canadensis SP142 strain. Plant Protect. Sci., 58: 158-169

download PDF

The soybean (Glycine max) is an important crop. The pod borer (Etiella zinckenella) is one of the most serious insects that attacks various Leguminosae. Common insecticidal controls are ineffective because of the insect’s growth properties. Use of resistant crop varieties offers stabilisation of the yield and has benefits over the use of insecticides. Bacillus thuringiensis is widely used as a bioinsecticide for pest control and a genetic material for pest-resistant transgenic plants. However, the resistance evolution of target insects is emerging as a major threat to the long-term efficacy of these applications. Studies on the detection of novel highly host-specific pesticidal proteins have been in urgent demand. A search for the source of Bt Cry toxins against E. zinckenella in the Vietnamese B. thuringiensis strain collection has been performed. The B. thuringiensis serovar canadensis SP142 is one of strains that resulted in more than 80% mortality to this pod borer. Its genome was estimated about 7.1 Mb and revealed a putative novel cry2Ab gene. The sequence analysis of cry2Ab gene revealed an open reading frame of 1 899 bp encoding a 633-amino acid protein with a calculated molecular mass of 70 kDa and 99.05% to 99.21% homology to known cry2Ab genes in the GenBank. There are eighteen different nucleotide sites which lead to five amino acid changes in Domain I and II. This gene was expressed in Escherichia coli BL21(DE3) and the purified Cry2Ab was toxic to E. zinckenella larvae with an LC50 value of 1.74 µg/g diet. The novel Cry2Ab was designated as Cry2Ab39 by the Bacterial Pesticidal Protein Resource Center and its sequence was deposited in the GenBank (MN319700.1). This is a type of novel Cry2 toxin from B. thuringiensis against E. zinckenella, and it is important for breeding E. zinckenella-resistant soybeans.

References:
Abbott W.S. (1925): A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265–267. https://doi.org/10.1093/jee/18.2.265a
 
Azizoglu U. (2019): Bacillus thuringiensis as a biofertilizer and biostimulator: A mini-review of the little-known plant growth-promoting properties of Bt. Current Microbiology, 76: 1379–1385. https://doi.org/10.1007/s00284-019-01705-9
 
Balaraman K. (2005): Occurrence and diversity of mosquitocidal strains of Bacillus thuringiensis. Journal of Vector Borne Diseases, 42: 81–86.
 
Beron C.M., Curatti L., Salerno G.L. (2005): New strategy for identification of novel cry-type genes from Bacillus thuringiensis strains. Applied and Environmental Microbiology Journal, 71: 761–765. https://doi.org/10.1128/AEM.71.2.761-765.2005
 
Betz F.S., Hammond B.G., Fuchs R.L. (2000): Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regulatory Toxicology and Pharmacology, 32: 156–173. https://doi.org/10.1006/rtph.2000.1426
 
Binh N.D., Chau N.Q., Thuong N.V., Nguyet N.A., Cuong T.T., Jamil J.M., Tri N.D.A., Tram N.H. (2000): Study on the distribution and biodiversity of Bacillus thuringiensis isolated from several provinces in Vietnam. In: Proceedings of the National Biological Conference "Issues of basic research in biology": 484–488.
 
Bradford M.M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
 
Bravo A., Gill S.S., Soberon M. (2007): Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49: 423–435. https://doi.org/10.1016/j.toxicon.2006.11.022
 
Chattopadhyay A., Bhatnagar N.B., Bhatnagar R. (2004): Bacterial insecticidal toxins. Critical Reviews in Microbiology, 30: 33–54. https://doi.org/10.1080/10408410490270712
 
Crickmore N., Zeigler D.R., Feitelson J., Schnepf E., Van Rie J., Lereclus D., Baum J., Dean D.H. (1998): Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62: 807–813. https://doi.org/10.1128/MMBR.62.3.807-813.1998
 
Dankocsik C., Donovan W.P., Jany C.S. (1990): Activation of a cryptic crystal protein gene of Bacillus thuringiensis subspecies kurstaki by gene fusion and determination of the crystal protein insecticidal specificity. Molecular Microbiology, 4: 2087–2094. https://doi.org/10.1111/j.1365-2958.1990.tb00569.x
 
Elleuch J., Jaoua S., Ginibre C., Chandre F., Tounsi S., Zghal R.Z. (2016): Toxin stability improvement and toxicity increase against dipteran and lepidopteran larvae of Bacillus thuringiensis crystal protein Cry2Aa. Pest Management Science, 72: 2240–2246. https://doi.org/10.1002/ps.4261
 
Fujimoto H., Itoh K., Yamamoto M., Kyozuka J., Shimamoto K. (1993): Insect resistant rice generated by introduction of a modified delta-endotoxin gene of Bacillus thuringiensis. Bio/Technology, 11: 1151–1155.
 
Gouffon C., Van Vliet A., Van Rie J., Jansens S., Jurat-Fuentes J.L. (2011): Binding sites for Bacillus thuringiensis Cry2Ae toxin on heliothine brush border membrane vesicles are not shared with Cry1A, Cry1F, or Vip3A toxin. Applied and Environmental Microbiology, 77: 3182–3188. https://doi.org/10.1128/AEM.02791-10
 
Gurevich A., Saveliev V., Vyahhi N., Tesler G. (2013): QUAST: Quality assessment tool for genome assemblies. Bioinformatics, 29: 1072–1075. https://doi.org/10.1093/bioinformatics/btt086
 
Hang P.L.B., Linh N.N., Ha N.H., Dong N.V., Hien L.T.T. (2021): Genome sequence of a Vietnamese Bacillus thuringiensis strain TH19 reveals two potential insecticidal crystal proteins against Etiella zinckenella larvae. Biological Control, 152: 104473. doi: 10.1016/j.biocontrol.2020.104473 https://doi.org/10.1016/j.biocontrol.2020.104473
 
Heckel D.G. (2020): How do toxins from Bacillus thuringiensis kill insects? An evolutionary perspective. Archives of Insect Biochemistry and Physiology, 104: e21673. doi: 10.1002/arch.21673 https://doi.org/10.1002/arch.21673
 
Hire R.S., Makde R.D., Dongre T.K., D’Souza S.F. (2009): Expression, purification and characterization of the Cry2Aa14 toxin from Bacillus thuringiensis subsp. kenyae. Toxicon, 54: 519–524. https://doi.org/10.1016/j.toxicon.2009.05.022
 
Laemmli U.K. (1970): Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680–685. https://doi.org/10.1038/227680a0
 
Lazarte N., Valacco M., Moreno S., Salerno G., Berón C. (2021): Molecular characterization of a Bacillus thuringiensis strain from Argentina, toxic against Lepidoptera and Coleoptera, based on its whole-genome and Cry protein analysis. Journal of Invertebrate Pathology, 183: 107563. doi: 10.1016/j.jip.2021.107563 https://doi.org/10.1016/j.jip.2021.107563
 
Lima G.M.S., Aguiar R.W.S., Corrêa R.F.T., Martins E.S., Gomes A.C.M., Nagata T. (2008): Cry2A toxins from Bacillus thuringiensis expressed in insect cells are toxic to two lepidopteran insects. World Journal of Microbiology and Biotechnology, 24: 2941. doi: 10.1007/s11274-008-9836-x https://doi.org/10.1007/s11274-008-9836-x
 
Mayjonade B., Gouzy J., Donnadieu C., Pouilly N., Marande W., Callot C., Langlade N., Munos S. (2016): Extraction of high-molecular-weight genomic DNA for long-read sequencing of single molecules. Biotechniques, 61: 203–205. https://doi.org/10.2144/000114460
 
Naveenarani M., Suresha G.S., Srikanth J., Hari K., Sankaranarayanan C., Mahesh P., Nirmala R., Swathik C.P., Crickmore N., Bakshi Ram, Appunu C., Singaravelu B. (2022): Whole genome analysis and functional characterization of a novel Bacillus thuringiensis (Bt 62) isolate against sugarcane white grub Holotrichia serrata (F). Genomics, 114: 185–195. https://doi.org/10.1016/j.ygeno.2021.12.012
 
Noguera P.A., Ibarra J.E. (2010): Detection of new cry genes of Bacillus thuringiensis by use of a novel PCR primer system. Applied and Environmental Microbiology, 76: 6150–6155. https://doi.org/10.1128/AEM.00797-10
 
Pacheco S., Gómez I., Chiñas M., Sánchez J., Soberón M., Bravo A. (2021): Whole genome sequencing analysis of Bacillus thuringiensis GR007 reveals multiple pesticidal protein genes. Frontiers in Microbiology, 12: 758314. doi: 10.3389/fmicb.2021.758314 https://doi.org/10.3389/fmicb.2021.758314
 
Palma L., Munoz D., Berry C., Murillo J., Caballero P. (2014): Draft genome sequences of two Bacillus thuringiensis strains and characterization of a putative 41.9-kDa insecticidal toxin. Toxins, 6: 1490–1504. https://doi.org/10.3390/toxins6051490
 
Pham V.T., Ho T.T., Phan H.T., Le T.H., Pham N.B., Conrad U. (2019): A plant-based artificial haemagglutinin (A/H5N1) strongly induced neutralizing immune responses in mice. Applied Sciences, 9: 4605. doi: 10.3390/app9214605 https://doi.org/10.3390/app9214605
 
Ragni A., Thiery I., Deleclus A. (1996): Characterization of six highly mosquitocidal Bacillus thuringiensis strains that do not belong to H-14 serotype. Current Microbiology, 32: 48–54. https://doi.org/10.1007/s002849900009
 
Sajid M., Geng C., Li M., Wang Y., Liu H., Zheng J., Peng D., Sun M. (2018): Whole-genome analysis of Bacillus thuringiensis revealing partial genes as a source of novel Cry toxins. Applied and Environmental Microbiology, 84: e00277-18. doi: 10.1128/AEM.00277-18 https://doi.org/10.1128/AEM.00277-18
 
Saleem F., Shakoori A.R. (2017): The first Cry2Ac-type protein toxic to Helicoverpa armigera: Cloning and overexpression of Cry2ac7 gene from SBS-BT1 strain of Bacillus thuringiensis. Toxins, 9: 358. doi: 10.3390/toxins9110358 https://doi.org/10.3390/toxins9110358
 
Sayyed A.H., Haward R., Herrero S., Ferre J., Wright D.J. (2000): Genetic and biochemical approach for characterization of resistance to Bacillus thuringiensis toxin Cry1Ac in a field population of the diamondback moth, Plutella xylostella. Applied and Environmental Microbiology, 66: 1509–1516. https://doi.org/10.1128/AEM.66.4.1509-1516.2000
 
Sevim A., Eryuzlu E., Demirbag Z., Demir I. (2012): A novel cry2Ab gene from the indigenous isolate Bacillus thuringiensis subsp. kurstaki. Journal of Microbiolog and Biotechnology, 22: 133–140. https://doi.org/10.4014/jmb.1108.08061
 
Simão F.A., Waterhouse R.M., Ioannidis P., Kriventseva E.V., Zdobnov E.M. (2015): BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31: 3210–3212. https://doi.org/10.1093/bioinformatics/btv351
 
Soheir F.A.E.R., Eman I.A.w. (2020): Efficiency of certain bio-insecticides for reducing the yield losses due to the bean pod borer, Etiella zinckenella (Treitschke) in soybean fields. Journal of Plant Protection and Pathology, 11: 29–36. https://doi.org/10.21608/jppp.2020.79160
 
Tabashnik B.E., Van Rensburg J.B., Carriere Y. (2009): Field-evolved insect resistance to Bt crops: Definition, theory, and data. Journal of Economic Entomology, 102: 2011–2025. https://doi.org/10.1603/029.102.0601
 
Waterhouse R.M., Seppey M., Simao F.A., Manni M., Ioannidis P., Klioutchnikov G., Kriventseva E.V., Zdobnov E.M. (2018): BUSCO applications from quality assessments to gene prediction and phylogenomics. Molecular Biology and Evolution, 35: 543–548. https://doi.org/10.1093/molbev/msx319
 
Wattam A.R., Brettin T., Davis J.J., Gerdes S., Kenyon R., Machi D., Mao C., Olson R., Overbeek R., Pusch G.D., Shukla M.P., Stevens R., Vonstein V., Warren A., Xia F., Yoo H. (2018): Assembly, annotation, and comparative genomics in PATRIC, the all bacterial bioinformatics resource center. Methods in Molecular Biology, 1704: 79–101.
 
Wu Y. (2014): Chapter six – Detection and mechanisms of resistance evolved in insects to cry toxins from Bacillus thuringiensis. In: Dhadialla T.S., Gill S.S. (eds). Advances in Insect Physiology. Cambridge, Academic Press:297–342.
 
Xu C., Wang B.C., Yu Z., Sun M. (2014): Structural insights into Bacillus thuringiensis Cry, Cyt and parasporin toxins. Toxins, 6: 2732–2770. https://doi.org/10.3390/toxins6092732
 
Ye W., Zhu L., Liu Y., Crickmore N., Peng D., Ruan L., Sun M. (2012): Mining new crystal protein genes from Bacillus thuringiensis on the basis of mixed plasmid-enriched genome sequencing and a computational pipeline. Applied and Environmental Microbiology, 78: 4795–4801. https://doi.org/10.1128/AEM.00340-12
 
Zhizhen P., Lian X., Yujing Z., Huai S., Zheng C., Meichun C., Qingxi C., Bo L. (2014): Characterization of a new cry2Ab gene of Bacillus thuringiensis with high insecticidal activity against Plutella xylostella L. World Journal of Microbiology and Biotechnology, 30: 2655–2662. https://doi.org/10.1007/s11274-014-1689-x
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti