Abdallah Y., Yang M., Zhang M., Masum M.M.I., Ogunyemi S.O., Hossain A., An Q., Yan C., Li B. (2019): Plant growth promotion and suppression of bacterial leaf blight in rice by Paenibacillus polymyxa Sx3. Letters in Applied Microbiology, 68: 423–429.
https://doi.org/10.1111/lam.13117
Al-Saleh M.A., Saleh A.A., Ibrahim Y.E. (2015): Integration of Pseudomonas fluorescens and salicylic acid improves citrus canker disease management caused by Xanthomonas citri subsp citri-A*. Archives of Phytopathology and Plant Protection, 48: 863–872.
https://doi.org/10.1080/03235408.2016.1143573
Bacon C.W., Hinton D.M. (2002): Endophytic and biological control potential of Bacillus mojavensis and related species. Biological Control, 23: 274–284.
https://doi.org/10.1006/bcon.2001.1016
Behlau F., Belasque J., Bergamin F.A., Graham J.H., Leite R.P., Gottwald T.R. (2008): Copper sprays and windbreaks for control of citrus canker on young orange trees in southern Brazil. Crop Protection, 27: 807–813.
https://doi.org/10.1016/j.cropro.2007.11.008
Beris D., Theologidis I., Skandalis N., Vassilakos N. (2018): Bacillus amyloliquefaciens strain MBI600 induces salicylic acid dependent resistance in tomato plants against Tomato spotted wilt virus and Potato virus Y. Scientific Reports, 8: 10320. doi: 10.1038/s41598-018-28677-3
https://doi.org/10.1038/s41598-018-28677-3
Bhattacharya S., Das A., Samadder S., Rajan S.S. (2016): Biosynthesis and characterization of a thermostable, alkali-tolerant chitinase from Bacillus pumilus JUBCH08 displaying antagonism against phytopathogenic Fusarium oxysporum. 3 Biotech, 6: 87. doi: 10.1007/s13205-016-0406-x
https://doi.org/10.1007/s13205-016-0406-x
Bock C.H., Parker P.E., Gottwald T.R. (2005): Effect of simulated wind-driven rain on duration and distance of dispersal of Xanthomonas axonopodis pv. citri from canker-infected citrus trees. Plant Disease, 89: 71–80.
https://doi.org/10.1094/PD-89-0071
Bruisson S., Zufferey M., L'Haridon F., Trutmann E., Anand A., Dutartre A., De Vrieze M., Weisskopf L. (2019): Endophytes and epiphytes from the grapevine leaf microbiome as potential biocontrol agents against phytopathogens. Frontiers in Microbiology, 10: 2726. doi: 10.3389/fmicb.2019.02726
https://doi.org/10.3389/fmicb.2019.02726
Canteros B.I., Gochez A.M., Moschini R.C. (2017): Management of citrus canker in Argentina, a success story. The Plant Pathology Journal, 33: 441–449.
https://doi.org/10.5423/PPJ.RW.03.2017.0071
Chen J.M., Cai X.Q., Qiu S.X., Hu F.P.(2014): Isolation and Identification of biocontrol bacteria from citrus to Xanthomonas axonopodis pv. citri. Chinese Journal of Tropical Crops, 35: 1398–1403
Chen L., Wang Z.K., Huang G.J., Cao X.Q., Xia Y.X., Yin Y.P. (2008): Evaluation of Bacillus subtilis strain CQBS03 against Xanthomonas axonopodis pv. citri. Scientia Agricultura Sinica, 41: 2537–2545.
Chen K., Tian Z., Luo Y., Cheng Y., Long C-A. (2018): Antagonistic activity and the mechanism of Bacillus amyloliquefaciens DH-4 against citrus green mold. Phytopathology, 108: 1253–1262.
https://doi.org/10.1094/PHYTO-01-17-0032-R
Chen W., Zhao L., Li H., Dong Y., Xu H., Guan Y., Rong S., Gao X., Chen R., Li L., Xu Z. (2019): The isolation of the antagonistic strain Bacillus australimaris CQ07 and the exploration of the pathogenic inhibition mechanism of Magnaporthe oryzae. PloS ONE, 14(8):e0220410.
https://doi.org/10.1371/journal.pone.0220410
Chowdhury S.P., Dietel K., Rändler M., Schmid M., Junge H., Borriss R., Hartmann A., Grosch R. (2013): Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. PloS ONE, 8(7):e68818
https://doi.org/10.1371/journal.pone.0068818
Cuenca J., Garcia-Lor A., Navarro L., Aleza P. (2018): Citrus genetics and breeding. In: Advances in Plant Breeding Strategies: Fruits: 403–436.
Das A.K. (2003): Citrus canker-A review. Journal of Applied Horticulture, 5: 52–60.
https://doi.org/10.37855/jah.2003.v05i01.15
Das R., Mondal B., Mondal P., Khatua D.C., Mukherjee N. (2014): Biological management of citrus canker on acid lime through Bacillus subtilis (S-12) in West Bengal, India. Journal of Biopesticides, 7: 38–41.
Daungfu O., Youpensuk S., Lumyong S. (2019): Endophytic bacteria isolated from citrus plants for biological control of citrus canker in lime plants. Tropical Life Sciences Research, 30: 73–88.
https://doi.org/10.21315/tlsr2019.30.1.5
Del Barrio-Duque A., Ley J., Samad A., Antonielli L., Sessitsch A., Compant S. (2019): Beneficial endophytic bacteria-Serendipita indica interaction for crop enhancement and resistance to phytopathogens. Frontiers in Microbiology, 10: 2888. doi: 10.3389/fmicb.2019.02888
https://doi.org/10.3389/fmicb.2019.02888
Du N., Shi L., Yuan Y., Sun J., Shu S., Guo S. (2017): Isolation of a potential biocontrol agent Paenibacillus polymyxa NSY50 from vinegar waste compost and its induction of host defense responses against Fusarium wilt of cucumber. Microbiological Research, 202: 1–10.
https://doi.org/10.1016/j.micres.2017.04.013
Egamberdieva D., Wirth S.J., Shurigin V.V., Hashem A., Abd-Allah E.F. (2017). Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Frontiers in Microbiology, 8: 1887. doi: 10.3389/fmicb.2017.01887
https://doi.org/10.3389/fmicb.2017.01887
Fan J., He Z., Ma L.Q., Stoffella P.J. (2011): Accumulation and availability of copper in citrus grove soils as affected by fungicide application. Journal of Soils and Sediments, 11: 639–648.
https://doi.org/10.1007/s11368-011-0349-0
Ference C.M., Gochez A.M., Behlau F., Wang N., Graham J. H., Jones J.B. (2018): Recent advances in the understanding of Xanthomonas citri ssp. citri pathogenesis and citrus canker disease management. Molecular plant pathology, 19: 1302–1318.
https://doi.org/10.1111/mpp.12638
Förster H., Kanetis L., Adaskaveg J.E. (2004): Spiral gradient dilution, a rapid method for determining growth responses and 50% effective concentration values in fungus-fungicide interactions. Phytopathology, 94: 163–170.
https://doi.org/10.1094/PHYTO.2004.94.2.163
Gallo M., Katz E. (1972): Regulation of secondary metabolite biosynthesis: catabolite repression of phenoxazinone synthase and actinomycin formation by glucose. Journal of Bacteriology, 109: 659–667.
https://doi.org/10.1128/JB.109.2.659-667.1972
Gautam S., Chauhan A., Sharma R., Sehgal R., Shirkot C.K. (2019): Potential of Bacillus amyloliquefaciens for biocontrol of bacterial canker of tomato incited by Clavibacter michiganensis ssp. michiganensis. Microbial Pathogenesis, 130: 196–203.
https://doi.org/10.1016/j.micpath.2019.03.006
Gottwald T.R., Graham J.H., Schubert T.S. (2002). Citrus canker: the pathogen and its impact. Plant Health Progress, 3: 1–15.
https://doi.org/10.1094/PHP-2002-0812-01-RV
Graham J.H., Gottwald T.R., Cubero J., Achor D.S. (2004): Xanthomonas axonopodis pv. citri: factors affecting successful eradication of citrus canker. Molecular Plant Pathology, 5: 1–15.
https://doi.org/10.1046/j.1364-3703.2004.00197.x
Graham J.H., Leite Jr, R.P., Yonce H.D., Myers M. (2008): Streptomycin controls citrus canker on sweet orange in Brazil and reduces risk of copper burn on grapefruit in Florida. Proceedings of the Florida State Horticultural Society, 121: 118–123.
Handelsman J., Raffel S., Mester E.H., Wunderlich L., Grau C.R. (1990): Biological control of damping-off of alfalfa seedlings with Bacillus cereus UW85. Applied and Environmental Microbiology, 56: 713–718.
https://doi.org/10.1128/AEM.56.3.713-718.1990
Hare J.D., Morse J.G., Menge J.L., Pehrson J.E., Coggins C.W. JR., Embleton T.W., Jarrell W.M., Meyer J.L. (1989): Population responses of the citrus red mite and citrus thrips to 'navel' orange cultural practices. Environmental Entomology, 18: 481–488.
https://doi.org/10.1093/ee/18.3.481
Heppner J.B. (1993): Citrus leafminer, Phyllocnistis citrella, in Florida (Lepidoptera: Gracillariidae: Phyllocnistinae). Tropical Lepidoptera Research, 4: 49–64.
Herrmann E.C. Jr., Gabliks J., Engle C., Perlman P.L. (1960): Agar diffusion method for detection and bioassay of antiviral antibiotics. Proceedings of the Society for Experimental Biology and Medicine, 103: 625–628.
https://doi.org/10.3181/00379727-103-25617
Hippler F.W.R., Boaretto R.M., Quaggio J.A., Mattos D.de. (2017): Copper in citrus production: required but avoided. Citrus Research & Technology, 38: 99–106.
Huang W., Liu X., Zhou X., Wang X., Liu X., Liu H. (2020): Calcium signaling is suppressed in Magnaporthe oryzae conidia by Bacillus cereus HS24. Phytopathology, 110: 309–316.
https://doi.org/10.1094/PHYTO-08-18-0311-R
Huang X., Zhang N., Yong X., Yang X., Shen Q. (2012): Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43. Microbiological Research, 167: 135–143.
https://doi.org/10.1016/j.micres.2011.06.002
Iraqi D., Van Quy L., Lamhamedi M.S., Tremblay F.M. (2005): Sucrose utilization during somatic embryo development in black spruce: Involvement of apoplastic invertase in the tissue and of extracellular invertase in the medium. Journal of Plant Physiology, 162: 115–124.
https://doi.org/10.1016/j.jplph.2003.06.001
Islam M.N., Ali M.S., Choi S.-J., Hyun J.-W., Baek K.-H. (2019): Biocontrol of citrus canker disease caused by Xanthomonas citri subsp. citri using an endophytic Bacillus thuringiensis. The Plant Pathology Journal, 35: 486–497.
Jamal Q., Cho J.-Y., Moon J.-H., Munir S., Anees M., Kim K.Y. (2017): Identification for the first time of cyclo (d-Pro-l-Leu) produced by Bacillus amyloliquefaciens Y1 as a Nematocide for control of Meloidogyne incognita. Molecules, 22: 1839. doi: 10.3390/molecules22111839
https://doi.org/10.3390/molecules22111839
Jamali H., Sharma A., Roohi N., Srivastava A.K. (2020): Biocontrol potential of Bacillus subtilis RH5 against sheath blight of rice caused by Rhizoctonia solani. Journal of Basic Microbiology, 60: 268–280.
https://doi.org/10.1002/jobm.201900347
Jamieson L.E., Chhagan A., Curtis C. (2009): Seasonal phenology of Australian citrus whitefly (Orchamoplatus citri) in New Zealand. New Zealand Plant Protection, 62: 69–75.
https://doi.org/10.30843/nzpp.2009.62.4787
Jeppson L.R., Complin J.O., Jesser M.J. (1962): Effects of application programs on citrus red mite control and development of resistance to acaricides. Journal of Economic Entomology, 55: 17–22.
https://doi.org/10.1093/jee/55.1.17
Ji X., Lu G., Gai Y., Zheng C., Mu Z. (2008): Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiology Ecology, 65: 565–573.
https://doi.org/10.1111/j.1574-6941.2008.00543.x
Junqing Q., Youzhou L., Yanfei X., Shaofeng M., Zhiyi C. (2013): Root colonization by Bacillus amyloliquefaciens B1619 and its impact on the microbial community of tomato rhizosphere. Acta Phytophylacica Sinica, 40: 507–511.
Langfield R.D., Scarano F.J., Heitzman M.E., Kondo M., Hammond G.B., Neto C.C. (2004): Use of a modified microplate bioassay method to investigate antibacterial activity in the Peruvian medicinal plant Peperomia galioides. Journal of Ethnopharmacology, 94: 279–281.
https://doi.org/10.1016/j.jep.2004.06.013
Lee G.H., Ryu C.-M. (2016): Spraying of leaf-colonizing Bacillus amyloliquefaciens protects pepper from Cucumber mosaic virus. Plant Disease, 100: 2099–2105.
https://doi.org/10.1094/PDIS-03-16-0314-RE
Li Y., Héloir M.-C., Zhang X., Geissler M., Trouvelot S., Jacquens L., Henkel M., Su X., Fang X., Wang Q., Adrian M. (2019): Surfactin and fengycin contribute to the protection of a Bacillus subtilis strain against grape downy mildew by both direct effect and defence stimulation. Molecular Plant Pathology, 20: 1037–1050.
Liao J.-X., Li K.-H., Wang J.-P., Deng J.-R., Liu Q.-G., Chang C.-Q. (2019): RNA-seq analysis provides insights into cold stress responses of Xanthomonas citri pv. citri. BMC Genomics, 20: 807. doi: 10.1186/s12864-019-6193-0
https://doi.org/10.1186/s12864-019-6193-0
Liu D., Li K., Hu J., Wang W., Liu X., Gao Z. (2019): Biocontrol and action mechanism of Bacillus amyloliquefaciens and Bacillus subtilis in soybean phytophthora blight. International Journal of Molecular Sciences, 20: 2908. doi: 10.3390/ijms20122908
https://doi.org/10.3390/ijms20122908
Martínez-Álvarez J.C., Castro-Martínez C., Sánchez-Peña P., Gutiérrez-Dorado R., Maldonado-Mendoza I.E. (2016): Development of a powder formulation based on Bacillus cereus sensu lato strain B25 spores for biological control of Fusarium verticillioides in maize plants. World Journal of Microbiology & Biotechnology, 32: 75. doi: 10.1007/s11274-015-2000-5
Martínez-Medina A., Fernández I., Sánchez-Guzmán M.J., Jung S.C., Pascual J.A., Pozo M.J. (2013). Deciphering the hormonal signaling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Frontiers in Plant Science, 4: 206. doi: 10.3389/fpls.2013.00206
https://doi.org/10.3389/fpls.2013.00206
Menkissoglu O., Lindow S.E. (1991): Relationship of free ionic copper and toxicity to bacteria in solutions of organic compounds. Phytopathology, 81: 1258–1263.
https://doi.org/10.1094/Phyto-81-1258
Nascimento F.X., Hernández A.G., Glick B.R., Rossi M.J. (2020): Plant growth-promoting activities and genomic analysis of the stress-resistant Bacillus megaterium STB1, a bacterium of agricultural and biotechnological interest. Biotechnology Reports, 25: e00406
https://doi.org/10.1016/j.btre.2019.e00406
Nikolić I., Berić T., Dimkić I., Popović T., Lozo J., Fira D., Stanković S. (2019): Biological control of Pseudomonas syringae pv. aptata on sugar beet with Bacillus pumilus SS-10.7
and Bacillus amyloliquefaciens (SS-12.6 and SS-38.4) strains. Journal of Applied Microbiology, 126: 165–176.
Rabbee M.F., Ali M.S., Baek K.-H. (2019): Endophyte Bacillus velezensis isolated from Citrus spp. controls streptomycin-resistant Xanthomonas citri subsp. citri that causes citrus bacterial canker. Agronomy, 9: 470.
https://doi.org/10.3390/agronomy9080470
Rangjaroen C., Lumyong S., Sloan W.T., Sungthong R. (2019): Herbicide-tolerant endophytic bacteria of rice plants as the biopriming agents for fertility recovery and disease suppression of unhealthy rice seeds. BMC Plant Biology, 19: 580. doi. 10.1186/s12870-019-2206-z
Richard D., Tribot N., Boyer C., Terville M., Boyer K., Javegny S., Roux-Cuvelier M., Pruvost O., Moreau A., Chabirand A., Vernière C. (2016): First report of copper-resistant Xanthomonas citri pv. citri pathotype a causing asiatic citrus canker in Réunion, France. Plant Disease, 101: 503. doi: 10.1094/PDIS-09-16-1387-PDN
https://doi.org/10.1094/PDIS-09-16-1387-PDN
Riera N., Wang H., Li Y., Li J., Pelz-Stelinski K., Wang N. (2018): Induced systemic resistance against citrus canker disease by Rhizobacteria. Phytopathology, 108: 1038–1045.
https://doi.org/10.1094/PHYTO-07-17-0244-R
Rong S., Xu H., Li L., Chen R., Gao X., Xu Z. (2020): Antifungal activity of endophytic Bacillus safensis B21 and its potential application as a biopesticide to control rice blast. Pesticide Biochemistry and Physiology, 162: 69–77.
https://doi.org/10.1016/j.pestbp.2019.09.003
Schoulties C.L., Civerolo E.L., Miller J.W., Stall R.E., Krass C.J., Poe S.R., DuCharme E.P. (1987): Citrus canker in Florida. Plant Disease, 71: 388–395.
https://doi.org/10.1094/PD-71-0388
Sétamou M., Rodriguez D., Saldana R., Schwarzlose G., Palrang D., Nelson S. D. (2010): Efficacy and uptake of soil-applied imidacloprid in the control of Asian citrus psyllid and a citrus leafminer, two foliar-feeding citrus pests. Journal of Economic Entomology, 103: 1711–1719.
https://doi.org/10.1603/EC09371
Sharma S.K., Sharma R.R. (2009): Citrus canker approaching century: a review. Tree and Forestry Science and Biotechnology, 2: 54–65.
Simons M., Van Der Bij A.J., Brand I., Weger L.A.D., Lugtenberg B.J.J. (1996): Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Molecular Plant-Microbe Interactions, 9: 600–607.
https://doi.org/10.1094/MPMI-9-0600
Tan X.Y., Huang S.L., Ren J.G., Yan W.H., Cen Z.L. (2006): Study on a bacterial strain Bt8 for biocontrol against citrus bacterial canker. Acta Microbiologica Sinica, 46: 292–296.
Yi J., Zhang D., Cheng Y., Tan J., Luo Y. (2019): The impact of Paenibacillus polymyxa HY96-2 luxS on biofilm formation and control of tomato bacterial wilt. Applied Microbiology and Biotechnology, 103: 9643–9657.
https://doi.org/10.1007/s00253-019-10162-0
Yuan J., Zhang N., Huang Q., Raza, W., Li, R., Vivanco, J. M., Shen Q. (2015): Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Scientific Reports, 5: 13438. doi: 10.1038/srep13438
https://doi.org/10.1038/srep13438
Zhou L., Zhang T., Tang S., Fu X., Yu S. (2020): Pan-genome analysis of Paenibacillus polymyxa strains reveals the mechanism of plant growth promotion and biocontrol. Antonie van Leeuwenhoek, 113: 1539–1558.
https://doi.org/10.1007/s10482-020-01461-y
Zhou X., He Z., Liang Z., Stoffella P.J., Fan J., Yang Y., Powell C.A. (2011): Long-term use of copper-containing fungicide affects microbial properties of citrus grove soils. Soil Science Society of America Journal, 75: 898–906.
https://doi.org/10.2136/sssaj2010.0321