Trichoderma asperellum (NST-009): A potential native antagonistic fungus to control Cercospora leaf spot and promote the growth of ‘Green Oak’ lettuce (Lactuca sativa L.) cultivated in the commercial NFT hydroponic system

https://doi.org/10.17221/69/2021-PPSCitation:

Promwee A., Intana W. (2022): Trichoderma asperellum (NST-009): A potential native antagonistic fungus to control Cercospora leaf spot and promote the growth of Green Oaklettuce (Lactuca sativa L.) cultivated in the commercial NFT hydroponic system. Plant Protect. Sci., 58: 139–149.

download PDF

Leaf spot caused by Cercospora lactucae-sativae is one of the most damaging diseases of ‘Green Oak’ lettuce in Thailand. This study was conducted to estimate the effectiveness of Trichoderma asperellum NST-009, a native strain in Thailand, to manage the leaf spot disease and enhance the growth of ‘Green Oak’ lettuce in a nutrient film technique (NFT) hydroponic system. In vitro tests showed that T. asperellum NST-009 significantly inhibited the mycelial growth of C. lactucae-sativae by 72.50%, and its antifungal metabolite from the culture filtrate of T. asperellum NST-009 inhibited the mycelial growth of C. lactucae-sativae by 93.26%. In the hydroponics experiment, T. asperellum NST-009 reduced the disease severity index by 67.51% compared to the inoculated control and significantly stimulated the growth of the ‘Green Oak’ lettuce in terms of the plant height (8.62%), canopy width (16.67%), leaf number (18.39%), shoot fresh weight (25.71%), root fresh weight (39.26%), and total P in the leaves (31.45%) compared to the control. In addition, T. asperellum NST-009 was found to survive in both the lettuce leaves and roots at 100.00%.

References:
Abo-Elyousr K.A., Abdel-Hafez S.I., Abdel-Rahim I.R. (2014): Isolation of Trichoderma and evaluation of their antagonistic potential against Alternaria porri. Journal of Phytopathology, 162: 567–574. https://doi.org/10.1111/jph.12228
 
AOAC (2000): Official Methods of Analysis. Gaithersburg, AOAC International.
 
Azarmi R., Hajieghrari B., Giglou A. (2011): Effect of Trichoderma isolates on tomato seedling growth response and nutrient uptake. African Journal of Biotechnology, 10: 5850–5855.
 
Baiyee B., Ito S., Sunapapo A. (2019): Trichoderma asperellum T1 mediated antifungal activity and induced defense response against leaf spot fungi in lettuce (Lactuca sativa L.). Physiological and Molecular Plant Pathology, 106: 96–101. https://doi.org/10.1016/j.pmpp.2018.12.009
 
Brožová J. (2004): Mycoparasitic fungi Trichoderma spp. in plant protection – Review. Plant Protection Science, 40: 63–74. https://doi.org/10.17221/459-PPS
 
Camejo D., Frutos A., Mestre T.C., del Carmen Piñero M., Rivero R.M., Martínez V. (2020): Artificial light impacts the physical and nutritional quality of lettuce plants. Horticulture, Environment, and Biotechnology, 61: 69–82. https://doi.org/10.1007/s13580-019-00191-z
 
Chairin T., Pornsuriya C., Thaochan N., Sunpapao A. (2017): Corynespora cassiicola causes leaf spot disease on lettuce (Lactuca sativa) cultivated in hydroponic systems in Thailand. Australasian Plant Disease Notes, 12: 16. doi: 10.1007/s13314-017-0241-x https://doi.org/10.1007/s13314-017-0241-x
 
Charoenrak P., Chamswarng C., Intanoo W., Keawprasert N. (2019): The effects of vermicompost mixed with Trichoderma asperellum on the growth and Pythium root rot of lettuces. International Journal of Geomate, 17: 215–221. https://doi.org/10.21660/2019.61.4728
 
Chen Z., Cuervo D.P., Müller J.A., Wiessner A., Köser H., Vymazal J., Kuschk P. (2016): Hydroponic root mats for wastewater treatment – A review. Environmental Science and Pollution Research, 23: 15911–15928. https://doi.org/10.1007/s11356-016-6801-3
 
Galletti S., Burzi P.L., Cerato C., Marinello S., Sala E. (2008): Trichoderma as a potential biocontrol agent for Cercospora leaf spot of sugar beet. BioControl, 53: 917–930. https://doi.org/10.1007/s10526-007-9113-1
 
Harman G.E., Howell C.R., Viterbo A., Chet I., Lorito M. (2004): Trichoderma species – Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2: 43–56. https://doi.org/10.1038/nrmicro797
 
Izzati M.Z.N.A., Abdullah F. (2008): Disease suppression in Ganoderma-infected oil palm seedlings treated with Trichoderma harzianum. Plant Protection Science, 44: 101–107. https://doi.org/10.17221/23/2008-PPS
 
Janardan Y., Verma J.P., Tiwari K.N. (2011): Plant growth promoting activities of fungi and their effect on chickpea plant growth. Asian Journal of Biological Sciences, 4: 291–299. https://doi.org/10.3923/ajbs.2011.291.299
 
Kabiri R., Nasibi F., Farahbakhsh H. (2014): Effect of exogenous salicylic acid on some physiological parameters and alleviation of drought stress in Nigella sativa plant under hydroponic culture. Plant Protection Science, 50: 43–51. https://doi.org/10.17221/56/2012-PPS
 
Kham-un P., Cheewangkoon R., To-anun C. (2017): Controlling Cercospora lactucae-sativae causes lettuce leaf spot disease using antagonistic yeasts. International Journal of Agricultural Technology, 13: 153–162.
 
Khan M.F., Smith L.J. (2005): Evaluating fungicides for controlling Cercospora leaf spot on sugar beet. Crop Protection, 24: 79–86. https://doi.org/10.1016/j.cropro.2004.06.010
 
Khunti J.P., Bhoraniya M.E., Vora V.D. (2005): Management of powdery mildew and Cercospora leaf spot of mungbean by some systemic fungicides. Legume Research, 28: 65–67.
 
Koohakan P., Jeanaksorn T., Nuntagij I. (2008): Major diseases of lettuce grown by commercial nutrient film technique in Thailand. Current Applied Science and Technology, 8: 56–63.
 
Nawrocka J., Małolepsza U. (2013): Diversity in plant systemic resistance induced by Trichoderma. Biological Control, 67: 149–156. https://doi.org/10.1016/j.biocontrol.2013.07.005
 
Nawrocka J., Szczech M., Małolepsza U. (2018): Trichoderma atroviride enhances phenolic synthesis and cucumber protection against Rhizoctonia solani. Plant Protection Science, 54: 17–23.
 
Nguanhom J., Cheewangkoon R., Groenewald J.Z., Braun U., To-anun C., Crous P.W. (2015): Taxonomy and phylogeny of Cercospora spp. from Northern Thailand. Phytotaxa, 233: 27–48. https://doi.org/10.11646/phytotaxa.233.1.2
 
Nieto-Jacobo M.F., Steyaert J.M., Salazar-Badillo F.B., Nguyen D.V., Rostás M., Braithwaite M., De Souza J.T., Jimenez-Bremont J.F., Ohkura M., Stewart A., Mendoza-Mendoza A. (2017): Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Frontiers in Plant Science, 8: 102. doi: 10.3389/fpls.2017.00102 https://doi.org/10.3389/fpls.2017.00102
 
Promwee A., Issarakraisila M., Intana W., Chamswarng C., Yenjit P. (2014): Phosphate solubilization and growth promotion of rubber tree (Hevea brasiliensis Muell. Arg.) by Trichoderma strains. Journal of Agricultural Science, 6: 8–20. https://doi.org/10.5539/jas.v6n9p8
 
Promwee A., Yenjit P., Issarakraisila M., Intana W., Chamswarng C. (2017): Efficacy of indigenous Trichoderma harzianum in controlling Phytophthora leaf fall (Phytophthora palmivora) in Thai rubber trees. Journal of Plant Diseases and Protection, 124: 41–50. https://doi.org/10.1007/s41348-016-0051-y
 
Ramesh A.M., Zacharia S. (2017): Efficacy of bio-agents and botanicals against leaf spot (Cercospora arachidicola Hori) of groundnut (Arachis hypogaea L.). Journal of Pharmacognosy and Phytochemistry, 6: 504–506.
 
Redda E.T., Ma J., Mei J., Li M., Wu B., Jiang X. (2018): Antagonistic potential of different isolates of Trichoderma against Fusarium oxysporum, Rhizoctonia solani, and Botrytis cinerea. European Journal of Experimental Biology, 8: 1–8.
 
Ruangwong O.U., Wonglom P., Phoka N., Suwannarach N., Lumyong S., Ito S.I., Sunpapao A. (2021): Biological control activity of Trichoderma asperelloides PSU-P1 against gummy stem blight in muskmelon (Cucumis melo). Physiological and Molecular Plant Pathology, 115: 101663. doi: 10.1016/j.pmpp.2021.101663 https://doi.org/10.1016/j.pmpp.2021.101663
 
Srimai K., Akarapisarn A. (2014): Bacillus subtilis LBF02 as biocontrol agent against leaf spot diseases caused by Cercospora lactucae-sativae in lettuce. Journal of Agricultural Science, 6: 151–158. https://doi.org/10.5539/jas.v6n3p151
 
Stewart A., Hill R. (2014): Applications of Trichoderma in plant growth promotion. In: Gupta V.K., Schmoll M., Herrera-Estrella A., Upadhyay R.S., Druzhinina I., Tuohy M.G. (eds). Biotechnology and Biology of Trichoderma. Amsterdam, Elsevier: 415–428.
 
Suwan N., Nuandee N., Akimitsu K., Nalumpang S. (2012): Analysis of β-tubulin gene from carbendazim resistant isolates of Cercospora lactucae-sativae on lettuce in Thailand. Journal of Agricultural Technology, 8: 711–723.
 
Thomas A., Saravanakumar D. (2019): Effect of host extract on growth and sporulation of Cercospora lactucae-sativae. Australasian Plant Disease Notes, 14: 1–4. https://doi.org/10.1007/s13314-019-0353-6
 
Thongkamngam T., Jaenaksorn T. (2017): Fusarium oxysporum (F221-B) as biocontrol agent against plant pathogenic fungi in vitro and in hydroponics. Plant Protection Science, 53: 85–95. https://doi.org/10.17221/59/2016-PPS
 
To-Anun C., Hidayat I., Meeboon J. (2011): Genus Cercospora in Thailand: Taxonomy and phylogeny (with a dichotomous key to species). Plant Pathology and Quarantine, 1: 11–87. https://doi.org/10.5943/ppq/1/1/3
 
Trkulja N., Milosavljević A., Stanisavljević R., Mitrović M., Jović J., Toševski I., Bošković J. (2015): Occurrence of Cercospora beticola populations resistant to benzimidazoles and demethylation-inhibiting fungicides in Serbia and their impact on disease management. Crop Protection, 75: 80–87. https://doi.org/10.1016/j.cropro.2015.05.017
 
Unartngam J., Srithongkum B., Intanoo W., Charoenrak P., Chamswarng C. (2020): Morphological and molecular based identification of Trichoderma CB-Pin-01 biological control agent of plant pathogenic fungi in Thailand. International Journal of Agricultural Technology, 16: 175–188.
 
Vinale F., Sivasithamparam K., Ghisalberti E.L., Marra R., Woo S.L., Lorito M. (2008): Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40: 1–10. https://doi.org/10.1016/j.soilbio.2007.07.002
 
Waghunde R.R., Shelake R.M., Sabalpara A.N. (2016): Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research, 11: 1952–1965. https://doi.org/10.5897/AJAR2015.10584
 
Wonglom P., Daengsuwan W., Ito S., Sunpapao A. (2019): Biological control of Sclerotium fruit rot of snake fruit and stem rot of lettuce by Trichoderma sp. T76-12/2 and the mechanisms involved. Physiological and Molecular Plant Pathology, 107: 1–7. https://doi.org/10.1016/j.pmpp.2019.04.007
 
Wonglom P., Ito S.I., Sunpapao A. (2020): Volatile organic compounds emitted from endophytic fungus Trichoderma asperellum T1 mediate antifungal activity, defense response and promote plant growth in lettuce (Lactuca sativa). Fungal Ecology, 43: 100867. doi: 10.1016/j.funeco.2019.100867 https://doi.org/10.1016/j.funeco.2019.100867
 
Yedidia I., Srivastva A.K., Kapulnik Y., Chet I. (2001): Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant and Soil, 235: 235–242. https://doi.org/10.1023/A:1011990013955
 
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti