Trichoderma asperellum (NST-009): A potential native antagonistic fungus to control Cercospora leaf spot and promote the growth of ‘Green Oak’ lettuce (Lactuca sativa L.) cultivated in the commercial NFT hydroponic system

Promwee A., Intana W. (2022): Trichoderma asperellum (NST-009): A potential native antagonistic fungus to control Cercospora leaf spot and promote the growth of Green Oaklettuce (Lactuca sativa L.) cultivated in the commercial NFT hydroponic system. Plant Protect. Sci., 58: 139–149.

download PDF

Leaf spot caused by Cercospora lactucae-sativae is one of the most damaging diseases of ‘Green Oak’ lettuce in Thailand. This study was conducted to estimate the effectiveness of Trichoderma asperellum NST-009, a native strain in Thailand, to manage the leaf spot disease and enhance the growth of ‘Green Oak’ lettuce in a nutrient film technique (NFT) hydroponic system. In vitro tests showed that T. asperellum NST-009 significantly inhibited the mycelial growth of C. lactucae-sativae by 72.50%, and its antifungal metabolite from the culture filtrate of T. asperellum NST-009 inhibited the mycelial growth of C. lactucae-sativae by 93.26%. In the hydroponics experiment, T. asperellum NST-009 reduced the disease severity index by 67.51% compared to the inoculated control and significantly stimulated the growth of the ‘Green Oak’ lettuce in terms of the plant height (8.62%), canopy width (16.67%), leaf number (18.39%), shoot fresh weight (25.71%), root fresh weight (39.26%), and total P in the leaves (31.45%) compared to the control. In addition, T. asperellum NST-009 was found to survive in both the lettuce leaves and roots at 100.00%.

Abo-Elyousr K.A., Abdel-Hafez S.I., Abdel-Rahim I.R. (2014): Isolation of Trichoderma and evaluation of their antagonistic potential against Alternaria porri. Journal of Phytopathology, 162: 567–574.
AOAC (2000): Official Methods of Analysis. Gaithersburg, AOAC International.
Azarmi R., Hajieghrari B., Giglou A. (2011): Effect of Trichoderma isolates on tomato seedling growth response and nutrient uptake. African Journal of Biotechnology, 10: 5850–5855.
Baiyee B., Ito S., Sunapapo A. (2019): Trichoderma asperellum T1 mediated antifungal activity and induced defense response against leaf spot fungi in lettuce (Lactuca sativa L.). Physiological and Molecular Plant Pathology, 106: 96–101.
Brožová J. (2004): Mycoparasitic fungi Trichoderma spp. in plant protection – Review. Plant Protection Science, 40: 63–74.
Camejo D., Frutos A., Mestre T.C., del Carmen Piñero M., Rivero R.M., Martínez V. (2020): Artificial light impacts the physical and nutritional quality of lettuce plants. Horticulture, Environment, and Biotechnology, 61: 69–82.
Chairin T., Pornsuriya C., Thaochan N., Sunpapao A. (2017): Corynespora cassiicola causes leaf spot disease on lettuce (Lactuca sativa) cultivated in hydroponic systems in Thailand. Australasian Plant Disease Notes, 12: 16. doi: 10.1007/s13314-017-0241-x
Charoenrak P., Chamswarng C., Intanoo W., Keawprasert N. (2019): The effects of vermicompost mixed with Trichoderma asperellum on the growth and Pythium root rot of lettuces. International Journal of Geomate, 17: 215–221.
Chen Z., Cuervo D.P., Müller J.A., Wiessner A., Köser H., Vymazal J., Kuschk P. (2016): Hydroponic root mats for wastewater treatment – A review. Environmental Science and Pollution Research, 23: 15911–15928.
Galletti S., Burzi P.L., Cerato C., Marinello S., Sala E. (2008): Trichoderma as a potential biocontrol agent for Cercospora leaf spot of sugar beet. BioControl, 53: 917–930.
Harman G.E., Howell C.R., Viterbo A., Chet I., Lorito M. (2004): Trichoderma species – Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2: 43–56.
Izzati M.Z.N.A., Abdullah F. (2008): Disease suppression in Ganoderma-infected oil palm seedlings treated with Trichoderma harzianum. Plant Protection Science, 44: 101–107.
Janardan Y., Verma J.P., Tiwari K.N. (2011): Plant growth promoting activities of fungi and their effect on chickpea plant growth. Asian Journal of Biological Sciences, 4: 291–299.
Kabiri R., Nasibi F., Farahbakhsh H. (2014): Effect of exogenous salicylic acid on some physiological parameters and alleviation of drought stress in Nigella sativa plant under hydroponic culture. Plant Protection Science, 50: 43–51.
Kham-un P., Cheewangkoon R., To-anun C. (2017): Controlling Cercospora lactucae-sativae causes lettuce leaf spot disease using antagonistic yeasts. International Journal of Agricultural Technology, 13: 153–162.
Khan M.F., Smith L.J. (2005): Evaluating fungicides for controlling Cercospora leaf spot on sugar beet. Crop Protection, 24: 79–86.
Khunti J.P., Bhoraniya M.E., Vora V.D. (2005): Management of powdery mildew and Cercospora leaf spot of mungbean by some systemic fungicides. Legume Research, 28: 65–67.
Koohakan P., Jeanaksorn T., Nuntagij I. (2008): Major diseases of lettuce grown by commercial nutrient film technique in Thailand. Current Applied Science and Technology, 8: 56–63.
Nawrocka J., Małolepsza U. (2013): Diversity in plant systemic resistance induced by Trichoderma. Biological Control, 67: 149–156.
Nawrocka J., Szczech M., Małolepsza U. (2018): Trichoderma atroviride enhances phenolic synthesis and cucumber protection against Rhizoctonia solani. Plant Protection Science, 54: 17–23.
Nguanhom J., Cheewangkoon R., Groenewald J.Z., Braun U., To-anun C., Crous P.W. (2015): Taxonomy and phylogeny of Cercospora spp. from Northern Thailand. Phytotaxa, 233: 27–48.
Nieto-Jacobo M.F., Steyaert J.M., Salazar-Badillo F.B., Nguyen D.V., Rostás M., Braithwaite M., De Souza J.T., Jimenez-Bremont J.F., Ohkura M., Stewart A., Mendoza-Mendoza A. (2017): Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Frontiers in Plant Science, 8: 102. doi: 10.3389/fpls.2017.00102
Promwee A., Issarakraisila M., Intana W., Chamswarng C., Yenjit P. (2014): Phosphate solubilization and growth promotion of rubber tree (Hevea brasiliensis Muell. Arg.) by Trichoderma strains. Journal of Agricultural Science, 6: 8–20.
Promwee A., Yenjit P., Issarakraisila M., Intana W., Chamswarng C. (2017): Efficacy of indigenous Trichoderma harzianum in controlling Phytophthora leaf fall (Phytophthora palmivora) in Thai rubber trees. Journal of Plant Diseases and Protection, 124: 41–50.
Ramesh A.M., Zacharia S. (2017): Efficacy of bio-agents and botanicals against leaf spot (Cercospora arachidicola Hori) of groundnut (Arachis hypogaea L.). Journal of Pharmacognosy and Phytochemistry, 6: 504–506.
Redda E.T., Ma J., Mei J., Li M., Wu B., Jiang X. (2018): Antagonistic potential of different isolates of Trichoderma against Fusarium oxysporum, Rhizoctonia solani, and Botrytis cinerea. European Journal of Experimental Biology, 8: 1–8.
Ruangwong O.U., Wonglom P., Phoka N., Suwannarach N., Lumyong S., Ito S.I., Sunpapao A. (2021): Biological control activity of Trichoderma asperelloides PSU-P1 against gummy stem blight in muskmelon (Cucumis melo). Physiological and Molecular Plant Pathology, 115: 101663. doi: 10.1016/j.pmpp.2021.101663
Srimai K., Akarapisarn A. (2014): Bacillus subtilis LBF02 as biocontrol agent against leaf spot diseases caused by Cercospora lactucae-sativae in lettuce. Journal of Agricultural Science, 6: 151–158.
Stewart A., Hill R. (2014): Applications of Trichoderma in plant growth promotion. In: Gupta V.K., Schmoll M., Herrera-Estrella A., Upadhyay R.S., Druzhinina I., Tuohy M.G. (eds). Biotechnology and Biology of Trichoderma. Amsterdam, Elsevier: 415–428.
Suwan N., Nuandee N., Akimitsu K., Nalumpang S. (2012): Analysis of β-tubulin gene from carbendazim resistant isolates of Cercospora lactucae-sativae on lettuce in Thailand. Journal of Agricultural Technology, 8: 711–723.
Thomas A., Saravanakumar D. (2019): Effect of host extract on growth and sporulation of Cercospora lactucae-sativae. Australasian Plant Disease Notes, 14: 1–4.
Thongkamngam T., Jaenaksorn T. (2017): Fusarium oxysporum (F221-B) as biocontrol agent against plant pathogenic fungi in vitro and in hydroponics. Plant Protection Science, 53: 85–95.
To-Anun C., Hidayat I., Meeboon J. (2011): Genus Cercospora in Thailand: Taxonomy and phylogeny (with a dichotomous key to species). Plant Pathology and Quarantine, 1: 11–87.
Trkulja N., Milosavljević A., Stanisavljević R., Mitrović M., Jović J., Toševski I., Bošković J. (2015): Occurrence of Cercospora beticola populations resistant to benzimidazoles and demethylation-inhibiting fungicides in Serbia and their impact on disease management. Crop Protection, 75: 80–87.
Unartngam J., Srithongkum B., Intanoo W., Charoenrak P., Chamswarng C. (2020): Morphological and molecular based identification of Trichoderma CB-Pin-01 biological control agent of plant pathogenic fungi in Thailand. International Journal of Agricultural Technology, 16: 175–188.
Vinale F., Sivasithamparam K., Ghisalberti E.L., Marra R., Woo S.L., Lorito M. (2008): Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40: 1–10.
Waghunde R.R., Shelake R.M., Sabalpara A.N. (2016): Trichoderma: A significant fungus for agriculture and environment. African Journal of Agricultural Research, 11: 1952–1965.
Wonglom P., Daengsuwan W., Ito S., Sunpapao A. (2019): Biological control of Sclerotium fruit rot of snake fruit and stem rot of lettuce by Trichoderma sp. T76-12/2 and the mechanisms involved. Physiological and Molecular Plant Pathology, 107: 1–7.
Wonglom P., Ito S.I., Sunpapao A. (2020): Volatile organic compounds emitted from endophytic fungus Trichoderma asperellum T1 mediate antifungal activity, defense response and promote plant growth in lettuce (Lactuca sativa). Fungal Ecology, 43: 100867. doi: 10.1016/j.funeco.2019.100867
Yedidia I., Srivastva A.K., Kapulnik Y., Chet I. (2001): Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant and Soil, 235: 235–242.
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti