An investigation of the genotoxic and cytotoxic effects of myclobutanil fungicide on plants

https://doi.org/10.17221/6/2021-PPS
download PDF

Myclobutanil is a chemical pesticide commonly used in the production of some vegetables and fruits like greenhouse peppers, grapes, and apples. The aim of this study was to investigate the genotoxic and cytotoxic effects of myclobutanil fungicide on the Allium cepa plant, the model organism. Randomly amplified polymorphic DNA and inter simple sequence repeat-PCR techniques were performed on the DNA of A. cepa exposed to the different myclobutanil doses and time periods. The nucleus anomalies and abnormal anaphases were investigated using a light microscope. PCR analyses showed that myclobutanil causes some DNA sequence changes on the onion genome depending on the increase in the fungicide dose and exposure time. It was determined that myclobutanil has a serious genotoxic effect, even in low doses like 25–50 ppm.

 

References:
Abass M.H., Al-Utbi S.D., Al-Samir E.A.R.H. (2017): Genotoxicity assessment of high concentrations of 2,4-D, NAA and dicamba on date palm callus (P. dactylifera L.) using protein profile and RAPD markers. Journal of Genetic Engineering and Biotechnology, 15: 287–295. https://doi.org/10.1016/j.jgeb.2016.12.003
 
Andrade-Vieira L.F., Bernardes P.M., Da Silva Ferreira M.F. (2018): Mutagenic effects of spent potliner and derivatives on A. cepa L. and L. sativa L.: A molecular approach. Chemosphere, 208: 257–262. https://doi.org/10.1016/j.chemosphere.2018.05.186
 
Beal K. (2019): Considerations in the addition of cannabis to chocolate. Current Opinion in Food Science, 28: 14–17. https://doi.org/10.1016/j.cofs.2019.02.007
 
Campos-Manas M.C., Plaza-Bolanos P., Martínez-Piernas A.B., Sanchez-Perez J.A., Agüera A. (2019): Determination of pesticide levels in wastewater from an agro-food industry: Target, suspect and transformation product analysis. Chemosphere, 232: 152–163. https://doi.org/10.1016/j.chemosphere.2019.05.147
 
Dhananjayan V., Ravichandran B., Panjakumar K., Kalaiselvi K., Rajasekar K., Mala A., Avinash G., Shridhar K., Manju A., Wilson R. (2019): Assessment of genotoxicity and cholinesterase activity among women workers occupationally exposed to pesticides in tea garden. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 841: 1–7. https://doi.org/10.1016/j.mrgentox.2019.03.002
 
Doyle J.J., Doyle J.L. (1987): A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19: 11–15.
 
Fernandes T.C.C., Mazzeo D.E.C., Marin-Morales M.A. (2009): Origin of nuclear and chromosomal alterations derived from the action of an aneugenic agent trifluralin herbicide. Ecotoxicology and Environmental Safety, 72: 1680–1686. https://doi.org/10.1016/j.ecoenv.2009.03.014
 
Fiskesjo G. (1997): Allium test for screening chemicals: Evaluation of cytologic parameters. In: Wang W., Gorsuch J.W., Hughes J.S. (eds): Plants for Environmental Studies. New York, CRC Lewis Publishers: 307–333.
 
Fonseca F.S., Carrão D.B., De Albuquerque N.C.P., Nardini V., Dias L.G., Da Silva R.M., Lopes N.P., De Oliveira A.R.M. (2019): Myclobutanil enantioselective risk assessment in humans through in vitro CYP450 reactions: Metabolism and inhibition studies. Food and Chemical Toxicology, 128: 202–211. https://doi.org/10.1016/j.fct.2019.04.009
 
Han W., Wang Y., Gao J., Wang S., Zhao S., Liu J., Zhong Y., Zhao D. (2018): Acute toxicity and sublethal effects of myclobutanil on respiration, flight and detoxification enzymes in Apis cerana cerana. Pesticide Biochemistry and Physiology, 147: 133–138. https://doi.org/10.1016/j.pestbp.2017.11.001
 
Kumar N., Awoyemi O., Willis A., Schmitt C., Ramalingam L., Moustaid-Moussa N., Crago J. (2019): Comparative lipid peroxidation and apoptosis in embryo-larval zebrafish exposed to 3 azole fungicides, tebuconazole, propiconazole, and myclobutanil, at environmentally relevant concentrations. Environmental Toxicology and Chemistry, 38: 1455–1466. https://doi.org/10.1002/etc.4429
 
Navarro S., Vela N., Pérez G., Navarro G. (2011): Effect of sterol-inhibiting (SBI) fungicides on the fermentation rate and quality of young ale beer. Food Chemistry, 126: 623–629. https://doi.org/10.1016/j.foodchem.2010.11.069
 
Salama D.M., Osman S.A., Abd El-Aziz M.E., Mohamed S.A., Elwahed A., Shaaban E.A. (2019): Effect of zinc oxide nanoparticles on the growth, genomic DNA, production and the quality of common dry bean (P. vulgaris). Biocatalysis and Agricultural Biotechnology, 18: 1878–1881. https://doi.org/10.1016/j.bcab.2019.101083
 
Sorrentino M.C., Capozzi F., Giordano S., Spagnuolo V. (2017): Genotoxic effect of Pb and Cd on in vitro cultures of Sphagnum palustre: An evaluation by ISSR markers. Chemosphere, 181: 208–215. https://doi.org/10.1016/j.chemosphere.2017.04.065
 
Stapulionytė A., Kleizaitė V., Šiukšta R., Žvingila D., Taraškevičius R., Čėsnienė T. (2019): Cyto/genotoxicological evaluation of hot spots of soil pollution using Allium bioassays in relation to geochemistry. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 842: 102–110. https://doi.org/10.1016/j.mrgentox.2019.01.001
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti