Isolation and identification of antifungal compounds produced by Bacillus Y-IVI for suppressing Fusarium wilt of muskmelon

https://doi.org/10.17221/70/2015-PPSCitation:Zhao Q., Mei X., Xu Y. (2016): Isolation and identification of antifungal compounds produced by Bacillus Y-IVI for suppressing Fusarium wilt of muskmelon. Plant Protect. Sci., 52: 167-175.
download PDF
The Bacillus strain Y-IVI was used in the biocontrol of muskmelon Fusarium wilt. It was identified as Bacillus subtilis. The antifungal compounds from the culture filtrate were purified by high performance liquid chromatography. Two series of homologous ion peaks were analysed by liquid chromatography-electrospray ionisation-mass spectrometry, one with molecular weights of 1028.7, 1042.7, and 1056.7 and the other with molecular weights of 1463, 1477, and 1491. The compounds were ascribed to iturin A and fengycin, respectively. The maximum production of iturin by Y-IVI was 89.75 mg/l. In conclusion, we provided biochemical evidence that strain Y-IVI was able to produce antifungal compounds and thus holds great potential for use in the biocontrol of Fusarium wilt disease.
References:
Beatty Perrin H, Jensen Susan E (2002): Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans , the causative agent of blackleg disease of canola. Canadian Journal of Microbiology, 48, 159-169 https://doi.org/10.1139/w02-002
 
BESSON FRANCOISE, MICHEL GEORGES (1987): Isolation and characterization of new iturins : Iturin D and iturin E.. The Journal of Antibiotics, 40, 437-442 https://doi.org/10.7164/antibiotics.40.437
 
Bie Xiaomei, Lu Zhaoxin, Lu Fengxia (2009): Identification of fengycin homologues from Bacillus subtilis with ESI-MS/CID. Journal of Microbiological Methods, 79, 272-278 https://doi.org/10.1016/j.mimet.2009.09.013
 
Chung Soohee, Kong Hyesuk, Buyer Jeffrey S., Lakshman Dilip K., Lydon John, Kim Sang-Dal, Roberts Daniel P. (2008): Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Applied Microbiology and Biotechnology, 80, 115-123 https://doi.org/10.1007/s00253-008-1520-4
 
De Cal A., Sztejnberg A., Sabuquillo P., Melgarejo P. (2009): Management Fusarium wilt on melon and watermelon by Penicillium oxalicum. Biological Control, 51, 480-486 https://doi.org/10.1016/j.biocontrol.2009.08.011
 
Dubey S.K., Padmanabhan P., Purohit H.J., Upadhyay S.N. (2003): Methanotrophs tracking and their diversity in paddy soil: a molecular approach. Current Science, 85: 92−95.
 
Eckart Klaus (1994): Mass spectrometry of cyclic peptides. Mass Spectrometry Reviews, 13, 23-55 https://doi.org/10.1002/mas.1280130104
 
Hsieh F.C., Lin T.C., Meng M., Kao S.S. (2008): Comparing methods for identifying Bacillus strains capable of producing the antifungal lipopeptide Iturin A. Current Microbiology, 56: 1−5.
 
Huang J.F., Wei Z., Tan S.Y., Mei X.L., Shen Q.R., Xu Y.C. (2014): Suppression of bacterial wilt of tomato by bioorganic fertilizer made from the antibacterial compound producing strain Bacillus amyloliquefaciens HR62. Journal of Agricultural and Food Chemistry, 62: 10708−10716.
 
Jourdan E., Henry G., Duby F., Dommes J., Barthelemy J.P., Thonart P., Ongena M. (2009): Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Molecular Plant-Microbe Interactions, 22: 456−468.
 
KAJIMURA YOSHIO, SUGIYAMA MASANORI, KANEDA MIYUKI (1995): Bacillopeptins, New Cyclic Lipopeptide Antibiotics from Bacillus subtilis FR-2.. The Journal of Antibiotics, 48, 1095-1103 https://doi.org/10.7164/antibiotics.48.1095
 
Kowall M., Vater J., Kluge B., Stein T., Franke P., Ziessow D. (1998): Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. Journal of Colloid and Interface Science, 204: 1−8.
 
Lee Young-Keun, Senthilkumar M., Kim Jung-Hun, Swarnalakshmi K., Annapurna K. (2008): Purification and partial characterization of antifungal metabolite from Paenibacillus lentimorbus WJ5. World Journal of Microbiology and Biotechnology, 24, 3057-3062 https://doi.org/10.1007/s11274-008-9852-x
 
Li L., Mo M., Qu Q., Luo H., Zhang K.Q. (2007): Compounds inhibitory to nematophagous fungi produced by Bacillus sp. strain H6 isolated from fungistatic soil. European Journal of Plant Pathology, 117: 329−340.
 
Li X.Y., Yang J.J., Mao Z.C., Ho H.H., Wu Y.X., He Y.Q. (2014): Enhancement of biocontrol activities and cyclic lipopeptides production by chemical mutagenesis of Bacillus subtilis XF-1, a biocontrol agent of Plasmodiophora brassicae and Fusarium solani. Indian Journal of Microbiology, 54: 476−479.
 
Ma Y., Chang Z.Z., Zhao J.T., Zhou M.G. (2008): Antifungal activity of Penicillium striatisporum Pst10 and its biocontrol effect on Phytophthora root rot of chilli pepper. Biological Control, 44: 24−31.
 
Ma Z.W., Hu J.C. (2014): Production and characterization of iturinic lipopeptides as antifungal agents and biosurfactants produced by a marine pinctada martensii-derived Bacillus mojavensis B0621A. Applied Biochemistry and Biotechnology, 173: 705−715.
 
Mizumoto Shinji, Shoda Makoto (2007): Medium optimization of antifungal lipopeptide, iturin A, production by Bacillus subtilis in solid-state fermentation by response surface methodology. Applied Microbiology and Biotechnology, 76, 101-108 https://doi.org/10.1007/s00253-007-0994-9
 
Nagorska K., Bikowski M., Obuchowski M. (2007): Multi cellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochimica Polomica, 54: 495−508.
 
Ongena Marc, Jacques Philippe (2008): Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16, 115-125 https://doi.org/10.1016/j.tim.2007.12.009
 
PEYPOUX F., POMMIER M. T., MARION D., PTAK M., DAS B. C., MICHEL G. (1986): Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis.. The Journal of Antibiotics, 39, 636-641 https://doi.org/10.7164/antibiotics.39.636
 
Rautela R., Singh A.K., Shukla A., Cameotra S.S. (2014): Lipopeptides from Bacillus strain AR2 inhibits biofilmn formation by Candida albicans. Antonie van Leeuwenhoek, 105: 809−821.
 
Raza W., Yang X.M., Wu H.S., Wang Y., Xu Y.C., Shen Q.R. (2009): Isolation and characterization of fusaricidin-type compound producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f.sp. nevium. European Journal of Plant Pathology, 125: 471−483.
 
Romero D., de Vicente A., Rakotoaly R.H., Dufour S.E., Veening J.W., Arrebola E., Cazorla F.M., Kuipers O.P., Paquot M., Pérez-García A. (2007): The iturin and fengycin families of lipopeptides are key factor in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interactions, 20: 430−440.
 
Sambrook J., Russell D.W. (2001): Molecular Cloning. A Laboratory Manual. New York, Cold Spring Harbor Laboratory.
 
Song Bo, Rong Yan-Jun, Zhao Ming-Xin, Chi Zhen-Ming (2013): Antifungal activity of the lipopeptides produced by Bacillus amyloliquefaciens anti-CA against Candida albicans isolated from clinic. Applied Microbiology and Biotechnology, 97, 7141-7150 https://doi.org/10.1007/s00253-013-5000-0
 
Tawfic A.A., Allam A.D.A. (2004): Improving cumin production under soil infestation with Fusarium wilt pathogen: II-field trial of different landraces and seed treatments. Asst Univ Bulletin of Environmental Research, 7: 47−64.
 
VANITTANAKOM NONGNUCH, LOEFFLER WOLFGANG, KOCH ULRIKE, JUNG GÜNTHER (1986): Fengycin - A novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3.. The Journal of Antibiotics, 39, 888-901 https://doi.org/10.7164/antibiotics.39.888
 
Vater J., Kablitz B., Wilde C., Franke P., Mehta N., Cameotra S. S. (2002): Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry of Lipopeptide Biosurfactants in Whole Cells and Culture Filtrates of Bacillus subtilis C-1 Isolated from Petroleum Sludge. Applied and Environmental Microbiology, 68, 6210-6219 https://doi.org/10.1128/AEM.68.12.6210-6219.2002
 
Williams B.H., Hathout Y., Fenselau C. (2002): Structural characterization of lipopeptide biomarkers isolated from Bacillus globigii. Journal of Mass Spectrometry, 37: 259−264.
 
Wu H.S., Yang X.M., Fan J.Q., Miao W.G., Ling N., Xu Y.C., Huang Q.W., Shen Q.R. (2009): Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms. BioControl, 54: 287−300.
 
Yang Liping, Xie Jiatao, Jiang Daohong, Fu Yanping, Li Guoqing, Lin Fangcan (2008): Antifungal substances produced by Penicillium oxalicum strain PY-1—potential antibiotics against plant pathogenic fungi. World Journal of Microbiology and Biotechnology, 24, 909-915 https://doi.org/10.1007/s11274-007-9626-x
 
Yuan Jun, Li Bing, Zhang Nan, Waseem Raza, Shen Qirong, Huang Qiwei (2012): Production of Bacillomycin- and Macrolactin-Type Antibiotics by Bacillus amyloliquefaciens NJN-6 for Suppressing Soilborne Plant Pathogens. Journal of Agricultural and Food Chemistry, 60, 2976-2981 https://doi.org/10.1021/jf204868z
 
Zhang Ting, Shi Zhi-Qi, Hu Liang-Bin, Cheng Luo-Gen, Wang Fei (2008): Antifungal compounds from Bacillus subtilis B-FS06 inhibiting the growth of Aspergillus flavus. World Journal of Microbiology and Biotechnology, 24, 783-788 https://doi.org/10.1007/s11274-007-9533-1
 
Zhao Qingyun, Dong Caixia, Yang Xingming, Mei Xinlan, Ran Wei, Shen Qirong, Xu Yangchun (2011): Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer. Applied Soil Ecology, 47, 67-75 https://doi.org/10.1016/j.apsoil.2010.09.010
 
Zhao Qingyun, Ran Wei, Wang Hui, Li Xiang, Shen Qirong, Shen Shengyuan, Xu Yangchun (2013): Biocontrol of Fusarium wilt disease in muskmelon with Bacillus subtilis Y-IVI. BioControl, 58, 283-292 https://doi.org/10.1007/s10526-012-9496-5
 
download PDF

© 2019 Czech Academy of Agricultural Sciences