Chemical stability of chlorine dioxide in the presence of prochloraz manganese

https://doi.org/10.17221/70/2018-PPSCitation:Chruściel A., Hreczuch W., Piontek W., Szumigaj-Tarnowska J. (2019): Chemical stability of chlorine dioxide in the presence of prochloraz manganese. Plant Protect. Sci., 55: 222-227.
download PDF

The chemical stability of chlorine dioxide (ClO2) in the presence of prochloraz manganese (prochloraz-Mn) as biologically active substances used in agrochemical treatments in the cultivation of mushrooms are presented. For model mixtures of the tested components, a relative decrease in ClO2 content over time was measured in the proportions applied during the mushroom cultivation cycle. Within 20 min after preparing a mixture of 1 500 ppm prochloraz-Mn and 100 ppm ClO2 in water, the relative decrease in the concentration of ClO2 was 20%. The obtained results indicate a possibility of simultaneously introducing the working mixture of ClO2 and prochloraz-Mn salt into the champignon peat casing, assuming its use directly after preparation.

References:
Bakhmutova-Albert Ekaterina V., Margerum Dale W., Auer Jameson G., Applegate Bruce M. (2008): Chlorine Dioxide Oxidation of Dihydronicotinamide Adenine Dinucleotide (NADH). Inorganic Chemistry, 47, 2205-2211  https://doi.org/10.1021/ic7019022
 
Carrasco J., Navarro M.J., Santos M., Gea F.J. (2017): Effect of five fungicides with different modes of action on cobweb disease ( Cladobotryum mycophilum ) and mushroom yield. Annals of Applied Biology, 171, 62-69  https://doi.org/10.1111/aab.12352
 
(Goldstein) Ehud Choshen, Elits Rudi, Rav-Acha Chaim (1986): The formation of cation-radicals by the action of chlorine dioxide on p-substituted styrenes usd other alkenes. Tetrahedron Letters, 27, 5989-5992  https://doi.org/10.1016/S0040-4039(00)85380-0
 
Davis G. T., Demek M. M., Rosenblatt D. H. (1972): Oxidations of amines. X. Detailed kinetics in the reaction of chlorine dioxide with triethylenediamine. Journal of the American Chemical Society, 94, 3321-3325  https://doi.org/10.1021/ja00765a008
 
Dennis William H., Hull Larry A., Rosenblatt David H. (1967): Oxidations of amines. IV. Oxidative fragmentation. The Journal of Organic Chemistry, 32, 3783-3787  https://doi.org/10.1021/jo01287a012
 
Gea F. J., Tello J. C., Honrubia M. (1996): In vitro sensitivity of Verticillium fungicola to selected fungicides. Mycopathologia, 136, 133-137  https://doi.org/10.1007/BF00438918
 
Geels F.P., Griemsvem L.J.L.D., van Rutjens A.J. (1991): Chlorine dioxide and the control of bacterial blotch on mushrooms caused by Pseudomonas tolaasii. In: Proceedings 13th International Congress on the Science and the Cultivation of Edible Fungi, Sept 1–6, 1991, Dublin, Irish Republic. Mushrooms Science, XIII: 437–442.
 
Gordon, G. (1972): The Chemistry of Chlorine Dioxide in Progress in Inorganic Chemistry. Vol. 15. New York, John Wiley & Sons.
 
Grogan H.M., Keeling C., Jukes A.A. (2000): In vivo response of the mushroom pathogen Verticillium fungicola (dry bubble) to prochloraz-manganese. In: Proceedings of the 2000 BCPC Pests and Diseases, 13–16 Nov, 2000, Brighton, UK: 273–278.
 
Henry Matthew J., Sisler Hugh D. (1984): Effects of sterol biosynthesis-inhibiting (SBI) fungicides on cytochrome P-450 oxygenations in fungi. Pesticide Biochemistry and Physiology, 22, 262-275  https://doi.org/10.1016/0048-3575(84)90019-1
 
Hoigné Jürg, Bader Heinz (1994): Kinetics of reactions of chlorine dioxide (OClO) in water—I. Rate constants for inorganic and organic compounds. Water Research, 28, 45-55  https://doi.org/10.1016/0043-1354(94)90118-X
 
Hull L. A., Davis G. T., Rosenblatt D. H., Williams H. K. R., Weglein R. C. (1967): Oxidations of Amines. III. Duality of Mechanism in the Reaction of Amines with Chlorine Dioxide. Journal of the American Chemical Society, 89, 1163-1170  https://doi.org/10.1021/ja00981a023
 
Hull Larry A., Davis George Thomas, Rosenblatt David H., Mann Charles K. (1969): Oxidations of amines. VII. Chemical and electrochemical correlations. The Journal of Physical Chemistry, 73, 2142-2146  https://doi.org/10.1021/j100727a007
 
Hull Larry A., Giordano W. P., Rosenblatt David H., Davis George Thomas, Mann Charles K., Milliken S. B. (1969): Oxidations of amines. VIII. Role of the cation radical in the oxidation of triethylenediamine by chlorine dioxide and hypochlorous acid. The Journal of Physical Chemistry, 73, 2147-2152  https://doi.org/10.1021/j100727a008
 
Hull Larry A., Davis George Thomas, Rosenblatt David H. (1969): Oxidations of amines. IX. Correlation of rate constants for reversible one-electron transfer in amine oxidation with reactant potentials. Journal of the American Chemical Society, 91, 6247-6250  https://doi.org/10.1021/ja01051a009
 
Ison Ana, Odeh Ihab N., Margerum Dale W. (2006): Kinetics and Mechanisms of Chlorine Dioxide and Chlorite Oxidations of Cysteine and Glutathione. Inorganic Chemistry, 45, 8768-8775  https://doi.org/10.1021/ic0609554
 
Jefcoate C.R. (1978): Measurement of substrate and inhibitor binding to microsomal cytochrome P-450 by optical-difference spectroscopy. Methods in Enzymology, 52: 258–279.
 
Motarjemi Y., Lelieveld H. (2013): Food Safety Management: A Practical Guide for the Food Industry. London, Elsevier Academic Press: 229.
 
Merenyi G., Lind J., Shen X., Eriksen T.E. (1990): Oxidation Potential of luminol. Is the autoxidation of singlet organic molecules an outer-sphere electron transfer? The Journal of Physical Chemistry, 94: 748–752.
 
Napolitano Michael J., Green Brandon J., Nicoson Jeffrey S., Margerum Dale W. (2005): Chlorine Dioxide Oxidations of Tyrosine, N -Acetyltyrosine, and Dopa. Chemical Research in Toxicology, 18, 501-508  https://doi.org/10.1021/tx049697i
 
Napolitano Michael J., Stewart David J., Margerum Dale W. (2006): Chlorine Dioxide Oxidation of Guanosine 5‘-Monophosphate. Chemical Research in Toxicology, 19, 1451-1458  https://doi.org/10.1021/tx060124a
 
Noszticzius Zoltán, Wittmann Maria, Kály-Kullai Kristóf, Beregvári Zoltán, Kiss István, Rosivall László, Szegedi János, Schlievert Patrick M (2013): Chlorine Dioxide Is a Size-Selective Antimicrobial Agent. PLoS ONE, 8, e79157-  https://doi.org/10.1371/journal.pone.0079157
 
Potočnik I., Milijaševic S., Rekanović E., Todorović B., Stepanović M. (2008): Sensitivity of Verticillium fungicola var. fungicola, Mycogone perniciosa and Cladobotryum spp. to fungicides in Serbia. In: Proceedings of the 17th Congress of the International Society for Mushroom Science, May 20–24, 2008, Cape Town, South Africa: 615–627.
 
Rav-Acha C.H., Blits R. (1985): The different reaction mechanisms by which chlorine and chlorine dioxide react with polycyclic aromatic hydrocarbons (PAH) in water. Water Research, 19, 1273-1281  https://doi.org/10.1016/0043-1354(85)90182-4
 
Reitz S.R., Roncarati R.A., Shock C.C., Kreeft H., Klauzer J. (2015): Chlorine dioxide injection through drip irrigation reduces Escherichia coli. In: Proceedings ASABE/IA Irrigation Symposium: Emerging Technologies for Sustainable Irrigation, Nov 10–12, 2015, Long Beach, USA. Michigan, ASABE St Joseph: 719–725.
 
Roberts T.R., Hutson D.H. (1999): Metabolic Pathways of Agrochemicals. Part 2: Insecticides and Fungicides. Cambridge, RSC.
 
Rosenblatt D. H., Hull L. A., De Luca D. C., Davis G. T., Weglein R. C., Williams H. K. R. (1967): Oxidations of Amines. II. Substituent Effects in Chlorine Dioxide Oxidations. Journal of the American Chemical Society, 89, 1158-1163  https://doi.org/10.1021/ja00981a022
 
Scarlett Kelly, Collins Damian, Tesoriero Len, Jewell Luke, van Ogtrop Floris, Daniel Rosalie (2016): Efficacy of chlorine, chlorine dioxide and ultraviolet radiation as disinfectants against plant pathogens in irrigation water. European Journal of Plant Pathology, 145, 27-38  https://doi.org/10.1007/s10658-015-0811-8
 
Simpson G.D., Miller R.F., Laxton G.D., Clements W.R. (1993): A focus on chlorine dioxide: the “ideal” biocide. Corrosion 93. March 8–12, 1993, New Orleans, USA: paper No. 472.
 
Szumigaj-Tarnowska J., Ulinski Z., Slusarski C. (2012): Effectiveness of selected disinfectants in the control of pathogenic bacteria Pseudomonas tolaasii. Progress in Plant Protection, 52: 701–706.
 
Truchado Pilar, Gil María Isabel, Suslow Trevor, Allende Ana, van Overbeek Leonard Simon (2018): Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil. PLOS ONE, 13, e0199291-  https://doi.org/10.1371/journal.pone.0199291
 
Vaida V., Simon J. D. (1995): The Photoreactivity of Chlorine Dioxide. Science, 268, 1443-1448  https://doi.org/10.1126/science.268.5216.1443
 
VINGGAARD ANNE MARIE, HASS ULLA, DALGAARD MAJKEN, ANDERSEN HELLE RAUN, BONEFELD-JORGENSEN EVA, CHRISTIANSEN SOFIE, LAIER PETER, POULSEN METTE ERECIUS (2006): Prochloraz: an imidazole fungicide with multiple mechanisms of action. International Journal of Andrology, 29, 186-192  https://doi.org/10.1111/j.1365-2605.2005.00604.x
 
WHO Geneva (2002): Pesticides Residues in Food – 2001. Toxicological Evaluations.
 
Yao K.S., Hsieh Y.H., Chang Y.J., Chang C.Y., Cheng T.C., Liao H.L. (2010): Inactivation effect of chlorine dioxide on phytopathogenic bacteria in irrigation water. Environomental Engineering and Management Journal, 3: 157–160.
 
download PDF

© 2019 Czech Academy of Agricultural Sciences