Antifungal activity of various chitinolytic bacteria against Colletotrichum in pepper M., Abid M., ur Rehman S., Ahmed N., Ashraf M., Zhang L., Yong Kim K. (2019): Antifungal activity of various chitinolytic bacteria against Colletotrichum in pepper. Plant Protect. Sci., 55: 109-115.
download PDF

Colletotrichum gleosporioides causes the anthracnose disease in plants including vegetables and fruits. The pathogenicity of the strains was confirmed by using pepper fruit inoculation assays. The chitinolytic bacterial strains Paenibacillus elgii HOA73, Lysobacter capsici HS124, Streptomyces griseus, Pseudomonas fluorescens, and Paenibacillus ehimensis MA2012 were evaluated against the phytopathogenic fungal strains. The bacteria significantly inhibited C. gleosporioides strain 40003, the inhibition ranging from 17% to 37%. Similarly, 5–41% inhibition of C. gleosporioides 40896 was noticed. Moreover, C. gleosporioides 40965 and 42113 were also inhibited. The n-butanol extracted crude compound of P. ehimensis MA2012 completely inhibited the spore germination of the phytopathogen. Hence the chitinolysis may be considered as an important trait for screening the biocontrol bacteria against anthracnose.

Bartlett Dave W, Clough John M, Godwin Jeremy R, Hall Alison A, Hamer Mick, Parr-Dobrzanski Bob (2002): The strobilurin fungicides. Pest Management Science, 58, 649-662
Chung Y. R., Kim C. H., Hwang I., Chun J. (2000): Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 50, 1495-1500
Cole B.J., Fletcher M., Waters J., Wetmore K., Blow M.J., Deutschbauer A.M., Dangl J.L., Visel A., Waters J., Dangl J.L. (2015): Genetic control of plant root colonization by the biocontrol agent, Pseudomonas fluorescens. Available at (accessed April 18, 2018).
Das Subha Narayan, Dutta Swarnalee, Kondreddy Anil, Chilukoti Neeraja, Pullabhotla Sarma V. S. R. N., Vadlamudi Srinivas, Podile Appa Rao (2010): Plant Growth-Promoting Chitinolytic Paenibacillus elgii Responds Positively to Tobacco Root Exudates. Journal of Plant Growth Regulation, 29, 409-418
Ding Rui, Wu Xue-Chang, Qian Chao-Dong, Teng Yi, Li Ou, Zhan Zha-Jun, Zhao Yu-Hua (2011): Isolation and identification of lipopeptide antibiotics from Paenibacillus elgii B69 with inhibitory activity against methicillin-resistant Staphylococcus aureus. The Journal of Microbiology, 49, 942-949
Embaby E.M., Ragab M.E., Doug Doud K.A.A., Ahmed R., Zveibil A., Maymon M., Freeman S. (2009): First report of Colletotrichum acutatum and C. gloeosporioides causing anthracnose diseases on strawberry in Egypt. New Disease Reports, 20: 20.
Georgakopoulos D.G., Hendson M., Panopoulos N.J., Schroth M.N. (1994): Cloning of a phenazine biosynthetic locus of Pseudomonas aureofaciens PGS12 and analysis of its expression in vitro with the ice nucleation reporter gene. Applied and Environmental Microbiology, 60: 2931–2938.
Harman Gary E. (2006): Overview of Mechanisms and Uses of Trichoderma spp.. Phytopathology, 96, 190-194
Hong Sung-Kee, Kim Wan-Gyu, Yun Hae-Keun, Choi Kyung-Jin (2008): Morphological Variations, Genetic Diversity and Pathogenicity of Colletotrichum species Causing Grape Ripe Rot in Korea. The Plant Pathology Journal, 24, 269-278
Hong Seong H., Anees M., Kim Kil Y. (2013): Biocontrol of Meloidogyne incognita inciting disease in tomato by using a mixed compost inoculated with Paenibacillus ehimensis RS820. Biocontrol Science and Technology, 23, 1024-1039
Hong Yuanyuan, Ma Yuchao, Wu Lixian, Maki Miranda, Qin Wensheng, Chen Sanfeng (2012): Characterization and analysis of nifH genes from Paenibacillus sabinae T27. Microbiological Research, 167, 596-601
Huang Zhaohui, Hu Yu, Shou Linfei, Song Mingxu (2013): Isolation and partial characterization of cyclic lipopeptide antibiotics produced by Paenibacillus ehimensis B7. BMC Microbiology, 13, 87-
Janisiewicz Wojciech J., Korsten Lise (2002): B IOLOGICAL C ONTROL OF P OSTHARVEST D ISEASES OF F RUITS. Annual Review of Phytopathology, 40, 411-441
Kim D.-S. (2004): Paenibacillus elgii sp. nov., with broad antimicrobial activity. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 54, 2031-2035
Kim Dal-Soo, Rae Cheol-Yong, Chun Sam-Jae, Kim Do-Hyung, Choi Sung-Won, Choi Kee-Hyun (2005): Paenibacillus elgii SD17 as a Biocontrol Agent Against Soil-borne Turf Diseases. The Plant Pathology Journal, 21, 328-333
Kim Yun-Sik, Min Ji-Young, Kang Beum-Kwan, Bach Ngyeun-Van, Choi Woo-Bong, Park Eun-Woo, Kim Heung-Tae (2007): Analyses of the Less Benzimidazole-sensitivity of the Isolates of Colletotrichum spp. Causing the Anthracnose in Pepper and Strawberry. The Plant Pathology Journal, 23, 187-192
Koche M.D., Gade R.M., Deshmukh A.A.G. (2013): Antifungal activity of secondary metabolites produced by Pseudomonas fluorescens. The Bioscan, 8: 723–726.
Lee Dong-Hyuk, Kim Dae-Ho, Jeon Young-Ah, Uhm Jae-Youl, Hong Seung-Beom (2007): Molecular and Cultural Characterization of Colletotrichum spp. Causing Bitter Rot of Apples in Korea. The Plant Pathology Journal, 23, 37-44
Lee Yong Seong, Anees Muhammad, Hyun Hae Nam, Kim Kil Yong (2013): Biocontrol potential of Lysobacter antibioticus HS124 against the root-knot nematode, Meloidogyne incognita, causing disease in tomato. Nematology, 15, 545-555
Leroux Pierre (2003): Modes d'action des produits phytosanitaires sur les organismes pathogènes des plantes. Comptes Rendus Biologies, 326, 9-21
Li J., Beatty P. K., Shah S., Jensen S. E. (2007): Use of PCR-Targeted Mutagenesis To Disrupt Production of Fusaricidin-Type Antifungal Antibiotics in Paenibacillus polymyxa. Applied and Environmental Microbiology, 73, 3480-3489
Li J., Jensen S.E. (2008): Nonribosomal biosynthesis of fusaricidins by Paenibacillus polymyxa PKB1 involves direct activation of a d-amino acid. Chemistry & Biology, 15: 118–127.
Lim H.S., Kim Y.S., Kim S.D. (1991): Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Applied and Environmental Microbiology, 57: 510–516.
Manjula K., Podile A. R. (2005): Increase in Seedling Emergence and Dry Weight of Pigeon Pea in the Field with Chitin-supplemented Formulations of Bacillus subtilis AF 1. World Journal of Microbiology and Biotechnology, 21, 1057-1062
MAURHOFER M., KEEL C., HAAS D., DÉFAGO G. (1995): Influence of plant species on disease suppression by Pseudomonas fluorescens strain CHAO with enhanced antibiotic production. Plant Pathology, 44, 40-50
Naing Kyaw Wai, Anees Muhammad, Kim Sang Jun, Nam Yi, Kim Young Cheol, Kim Kil Yong (2014): Characterization of antifungal activity of Paenibacillus ehimensis KWN38 against soilborne phytopathogenic fungi belonging to various taxonomic groups. Annals of Microbiology, 64, 55-63
Naing Kyaw Wai, Lee Yong Seong, Nguyen Xuan Hoa, Jeong Min Hae, Anees Muhammad, Oh Byeong Seok, Cho Jeong Yong, Moon Jae Hak, Kim Kil Yong (2015): Isolation and characterization of an antimicrobial lipopeptide produced by Paenibacillus ehimensis MA2012. Journal of Basic Microbiology, 55, 857-868
Nam M. H., Kim T. I., Gleason M. L., Song J. Y., Kim H. G. (2008): First Report of Anthracnose Fruit Rot Caused by Colletotrichum acutatum on Strawberry in Korea. Plant Disease, 92, 1247-1247
Nguyen Xuan-Hoa, Naing Kyaw-Wai, Lee Young-Seong, Tindwa Hamisi, Lee Geon-Hyoung, Jeong Byoung-Kon, Ro Hee-Myeong, Kim Sang-Jun, Jung Woo-Jin, Kim Kil-Yong (2012): Biocontrol Potential of Streptomyces griseus H7602 Against Root Rot Disease (Phytophthora capsici) in Pepper. The Plant Pathology Journal, 28, 282-289
Nguyen Xuan Hoa, Naing Kyaw Wai, Lee Young Seong, Kim Yong Hwan, Moon Jae Hak, Kim Kil Yong (2015): Antagonism of antifungal metabolites from Streptomyces griseus H7602 against Phytophthora capsici. Journal of Basic Microbiology, 55, 45-53
O’Sullivan D.J., O’Gara F. (1992): Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiological Reviews, 56: 662–676.
Qian Chao-Dong, Wu Xue-Chang, Teng Yi, Zhao Wen-Peng, Li Ou, Fang Sheng-Guo, Huang Zhao-Hui, Gao Hai-Chun (2012): Battacin (Octapeptin B5), a New Cyclic Lipopeptide Antibiotic from Paenibacillus tianmuensis Active against Multidrug-Resistant Gram-Negative Bacteria. Antimicrobial Agents and Chemotherapy, 56, 1458-1465
Rosenberger D. A. (1981): Postharvest Fungicides for Apples: Development of Resistance to Benomyl, Vinclozolin, and Iprodione. Plant Disease, 65, 1010-
Seo Dong-Jun, Lee Yong-Sung, Kim Kil-Yong, Jung Woo-Jin (2016): Antifungal activity of chitinase obtained from Paenibacillus ehimensis MA2012 against conidial of Collectotrichum gloeosporioides in vitro. Microbial Pathogenesis, 96, 10-14
Shaheen M., Li J., Ross A.C., Vederas J.C., Jensen S.E. (2011): Paenibacillus polymyxa PKB1 produces variants of polymyxin b-type antibiotics. Chemistry & Biology, 18: 1640–1648.
Slepecky R.A., Hemphill H.E. (2006): The genus Bacillus – nonmedical. In: Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. (eds): The Prokaryotes. Chap. 12.16. New York, Springer: 530–562.
Waller J.M. (1992): Colletotrichum diseases of perennial and other cash crops. In: Bailey J.A., Jeger M.J. (eds): Colletotrichum: Biology, Pathology and Control. Wallingford, CAB International: 167–185.
Wei Xinli, Jeon Hae-Sook, Han Keon-Seon, Koh Young-Jin, Hur Jae-Seoun (2008): Antifungal Activity of Lichen-forming Fungi against Colletotrichum acutatum on Hot Pepper. The Plant Pathology Journal, 24, 202-206
Wu Xue-Chang, Shen Xiao-Bo, Ding Rui, Qian Chao-Dong, Fang Hai-Huan, Li Ou (2010): Isolation and partial characterization of antibiotics produced by Paenibacillus elgii B69. FEMS Microbiology Letters, 310, 32-38
Zacky Fathima Ameena, Ting Adeline Su Yien (2015): Biocontrol of Fusarium oxysporum f.sp. cubense tropical race 4 by formulated cells and cell-free extracts of Streptomyces griseus in sterile soil environment. Biocontrol Science and Technology, 25, 685-696
download PDF

© 2019 Czech Academy of Agricultural Sciences