Adams D. J. (2004): Fungal cell wall chitinases and glucanases. Microbiology, 150, 2029-2035
https://doi.org/10.1099/mic.0.26980-0
Afshari-Azad H. (2001): The Important Canola Diseases. Tehran, Agicultural Education Press.
Bertani G. (1951): Studies on lysogenesis. Ι. The mode of phage liberation by lysogenic Escherichia coli. Journal of Bacteriology, 62: 293–300.
Carsolio C., Benhamou N., Haran S., Cortés C., Gutierrez A., Chet I., Herrera-Estrella A. (1999): Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Applied and Environmental Microbiology, 65: 929–935.
Carstens M., Vivier M., Pretorius I. (2003): The Saccharomyces cerevisiae chitinase, encoded by the CTSI-2 gene, confers antifungal activity against Botrytis cinerea to transgenic tobacco. Transgenic Research, 12: 497–508.
Chang Ming-Mei, Culley David, Choi Jane J, Hadwiger Lee A (2002): Agrobacterium-mediated co-transformation of a pea β-1,3-glucanase and chitinase genes in potato (Solanum tuberosum L. c.v. Russet Burbank) using a single selectable marker. Plant Science, 163, 83-89
https://doi.org/10.1016/S0168-9452(02)00063-8
Chet I., Benhamou N., Haran S. (1998): Mycoparasitism and lytic enzymes. Trichoderma and Gliocladium, 2: 153–172.
Dana M. d. l. M., Pintor-Toro J. A., Cubero B. (2006): Transgenic Tobacco Plants Overexpressing Chitinases of Fungal Origin Show Enhanced Resistance to Biotic and Abiotic Stress Agents. PLANT PHYSIOLOGY, 142, 722-730
https://doi.org/10.1104/pp.106.086140
De Buck Sylvie, Jacobs Anni, Van Montagu Marc, Depicker Ann (1998):
Agrobacterium tumefaciens Transformation and Cotransformation Frequencies of
Arabidopsis thaliana Root Explants and Tobacco Protoplasts. Molecular Plant-Microbe Interactions, 11, 449-457
https://doi.org/10.1094/MPMI.1998.11.6.449
Deng Shiping, Lorito Matteo, Penttilä Merja, Harman Gary E. (2007): Overexpression of an Endochitinase Gene (ThEn-42) in Trichoderma atroviride for Increased Production of Antifungal Enzymes and Enhanced Antagonist Action Against Pathogenic Fungi. Applied Biochemistry and Biotechnology, 142, 81-94
https://doi.org/10.1007/s12010-007-0012-9
Doyle J.J. (1990): Isolation of plant DNA from fresh tissue. Focus, 12: 13–15.
Esfahani K., Motallebi M., Zamani M.R. (2012): Construction of plant expression vectors harboring chitinase (chit42) and glucanase (bgn13.1) genes from Trichoderma species. Iranian Journal of Biology, 24: 880–894.
Fagard M., Vaucheret H. (2000): (Trans) gene silencing in plants: how many mechanisms? Annual Review of Plant Biology, 51: 167–194.
Finnegan J., McElroy D. (1994): Transgene inactivation: plants fight back! Nature Biotechnology, 12: 883–888.
Gentile A., Deng Z., La Malfa S., Distefano G., Domina F., Vitale A., Polizzi G., Lorito M., Tribulato E. (2007): Enhanced resistance to Phoma tracheiphila and Botrytis cinerea in transgenic lemon plants expressing a Trichoderma harzianum chitinase gene. Plant Breeding, 126, 146-151
https://doi.org/10.1111/j.1439-0523.2007.01297.x
Gokul B., Lee J.-H., Song K.-B., Rhee S. K., Kim C.-H., Panda T. (): Characterization and applications of chitinases from Trichoderma harzianum – A review. Bioprocess Engineering, 23, 691-694
https://doi.org/10.1007/s004499900138
Harighi M.J., Motallebi M., Zamani M.R. (2006): Antifungal activity of heterologous expressed chitinase 42 (Chit42) from Trichoderma atroviride PTCC5220. Iranian Journal of Biotechnology, 4: 95–103.
Iyer L.M., Kumpatla S.P., Chandrasekharan M.B., Hall T.C. (2000): Transgene silencing in monocots. Plant Molecular Biology, 43: 323–346.
Jayaraj J., Punja Z. K. (2007): Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens. Plant Cell Reports, 26, 1539-1546
https://doi.org/10.1007/s00299-007-0368-x
Kahrizi Danial, Salmanian Ali Hatef, Afshari Afsoon, Moieni Ahmad, Mousavi Amir (2006): Simultaneous substitution of Gly96 to Ala and Ala183 to Thr in 5-enolpyruvylshikimate-3-phosphate synthase gene of E. coli (k12) and transformation of rapeseed (Brassica napus L.) in order to make tolerance to glyphosate. Plant Cell Reports, 26, 95-104
https://doi.org/10.1007/s00299-006-0208-4
Kalai K., Giczey G., Mészaros A., Dénes F., Balazs E. (2006): Trichoderma chitinase gene expression confers mould resistance. Acta Horticulturae (ISHS), 725: 783–789.
Khan Raham Sher, Sjahril Rinaldi, Nakamura Ikuo, Mii Masahiro (2008): Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications. Plant Biotechnology Reports, 2, 13-20
https://doi.org/10.1007/s11816-008-0043-x
Liu Mei, Sun Zong-xiu, Zhu Jie, Xu Tong, Harman Gary E., Lorito Matteo (2004): Science Letters: Enhancing rice resistance to fungal pathogens by transformation with cell wall degrading enzyme genes from
Trichoderma atroviride. Journal of Zhejiang University SCIENCE, 5, 133-136
https://doi.org/10.1631/jzus.2004.0133
Lorito M., Mach R. L., Sposato P., Strauss J., Peterbauer C. K., Kubicek C. P. (1996): Mycoparasitic interaction relieves binding of the Cre1 carbon catabolite repressor protein to promoter sequences of the ech42 (endochitinase-encoding) gene in Trichoderma harzianum. Proceedings of the National Academy of Sciences, 93, 14868-14872
https://doi.org/10.1073/pnas.93.25.14868
Matroudi S., Zamani M.R., Motallebi M. (2008): Molecular cloning of chitinase 33 (chit33) gene from Trichoderma atroviride. Brazilian Journal of Microbiology, 39, 433-437
https://doi.org/10.1590/S1517-83822008000300005
Matzke M., Mette M., Matzke A. (2000): Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Molecular Biology, 43: 401–415.
Maximova Siela N., Marelli Jean-Philippe, Young Ann, Pishak Sharon, Verica Joseph A., Guiltinan Mark J. (2006): Over-expression of a cacao class I chitinase gene in Theobroma cacao L. enhances resistance against the pathogen, Colletotrichum gloeosporioides. Planta, 224, 740-749
https://doi.org/10.1007/s00425-005-0188-6
Murashige Toshio, Skoog Folke (1962): A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 473-497
https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Pasonen Hanna-Leena, Vihervuori Liisa, Seppänen Sanna-Kaisa, Lyytikäinen-Saarenmaa Päivi, Ylioja Tiina, von Weissenberg Kim, Pappinen Ari (2008): Field performance of chitinase transgenic silver birch (Betula pendula Roth): growth and adaptive traits. Trees, 22, 413-421
https://doi.org/10.1007/s00468-007-0202-7
Sambrook J., Russell D.W. (2001): Molecular Cloning: A Laboratory Manual. 3rd Ed. New York, Cold Spring Harbor: 1.32–1.38.
Sharma K. K. (1987): Control of organ differentiation from somatic tissues and pollen embryogenesis in anther culture of B. juncea. [PhD Thesis.] University of Delhi.
Wessels J., G., H., Sietsma J., H. (1981): Fungal cell walls: a survey. In: Tanner W., Loewus F. (eds): Encyclopedia of Plant Physiology, New Series, Plant Carbohydrates ΙΙ. Berlin, Springer-Verlag: 352–394.
XIAO Yue-Hua, LI Xian-Bi, YANG Xing-Yong, LUO Ming, HOU Lei, GUO Shao-Hui, LUO Xiao-Ying, PEI Yan (): Cloning and Characterization of a Balsam Pear Class I Chitinase Gene (
Mcchit1 ) and Its Ectopic Expression Enhances Fungal Resistance in Transgenic Plants. Bioscience, Biotechnology and Biochemistry, 71, 1211-1219
https://doi.org/10.1271/bbb.60658