Transformation of canola by chit33 gene towards improving resistance to Sclerotinia sclerotiorum T., Moradyar M., Zamani M.R., Motallebi M. (2015): Transformation of canola by chit33 gene towards improving resistance to Sclerotinia sclerotiorum. Plant Protect. Sci., 51: 6-12.
download PDF
An endochitinase gene (chit33-cDNA) from the biocontrol fungus Trichoderma atroviride was overexpressed under the CaMV35S constitutive promoter in canola (R line Hyola 308). Transformation of cotyledonary petioles was achieved via Agrobacterium tumefaciens. The insertion of the transgene was verified by PCR and Southern blotting. The transgenic over-expression approach was used in order to investigate antifungal activity of expressed Chit33 on Sclerotinia sclerotiorum. Antifungal activity was detected in transgenic canola using detached leaf assay. Lesion sizes of transgenic canola caused by S. sclerotiorum were significantly retarded when compared to non-transgenic canola plant.
Adams D. J. (2004): Fungal cell wall chitinases and glucanases. Microbiology, 150, 2029-2035
Afshari-Azad H. (2001): The Important Canola Diseases. Tehran, Agicultural Education Press.
Bertani G. (1951): Studies on lysogenesis. Ι. The mode of phage liberation by lysogenic Escherichia coli. Journal of Bacteriology, 62: 293–300.
Carsolio C., Benhamou N., Haran S., Cortés C., Gutierrez A., Chet I., Herrera-Estrella A. (1999): Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Applied and Environmental Microbiology, 65: 929–935.
Carstens M., Vivier M., Pretorius I. (2003): The Saccharomyces cerevisiae chitinase, encoded by the CTSI-2 gene, confers antifungal activity against Botrytis cinerea to transgenic tobacco. Transgenic Research, 12: 497–508.
Chang Ming-Mei, Culley David, Choi Jane J, Hadwiger Lee A (2002): Agrobacterium-mediated co-transformation of a pea β-1,3-glucanase and chitinase genes in potato (Solanum tuberosum L. c.v. Russet Burbank) using a single selectable marker. Plant Science, 163, 83-89
Chet I., Benhamou N., Haran S. (1998): Mycoparasitism and lytic enzymes. Trichoderma and Gliocladium, 2: 153–172.
Dana M. d. l. M., Pintor-Toro J. A., Cubero B. (2006): Transgenic Tobacco Plants Overexpressing Chitinases of Fungal Origin Show Enhanced Resistance to Biotic and Abiotic Stress Agents. PLANT PHYSIOLOGY, 142, 722-730
De Buck Sylvie, Jacobs Anni, Van Montagu Marc, Depicker Ann (1998): Agrobacterium tumefaciens Transformation and Cotransformation Frequencies of Arabidopsis thaliana Root Explants and Tobacco Protoplasts. Molecular Plant-Microbe Interactions, 11, 449-457
Deng Shiping, Lorito Matteo, Penttilä Merja, Harman Gary E. (2007): Overexpression of an Endochitinase Gene (ThEn-42) in Trichoderma atroviride for Increased Production of Antifungal Enzymes and Enhanced Antagonist Action Against Pathogenic Fungi. Applied Biochemistry and Biotechnology, 142, 81-94
Doyle J.J. (1990): Isolation of plant DNA from fresh tissue. Focus, 12: 13–15.
Esfahani K., Motallebi M., Zamani M.R. (2012): Construction of plant expression vectors harboring chitinase (chit42) and glucanase (bgn13.1) genes from Trichoderma species. Iranian Journal of Biology, 24: 880–894.
Fagard M., Vaucheret H. (2000): (Trans) gene silencing in plants: how many mechanisms? Annual Review of Plant Biology, 51: 167–194.
Finnegan J., McElroy D. (1994): Transgene inactivation: plants fight back! Nature Biotechnology, 12: 883–888.
Gentile A., Deng Z., La Malfa S., Distefano G., Domina F., Vitale A., Polizzi G., Lorito M., Tribulato E. (2007): Enhanced resistance to Phoma tracheiphila and Botrytis cinerea in transgenic lemon plants expressing a Trichoderma harzianum chitinase gene. Plant Breeding, 126, 146-151
Gokul B., Lee J.-H., Song K.-B., Rhee S. K., Kim C.-H., Panda T. (): Characterization and applications of chitinases from Trichoderma harzianum – A review. Bioprocess Engineering, 23, 691-694
Harighi M.J., Motallebi M., Zamani M.R. (2006): Antifungal activity of heterologous expressed chitinase 42 (Chit42) from Trichoderma atroviride PTCC5220. Iranian Journal of Biotechnology, 4: 95–103.
Iyer L.M., Kumpatla S.P., Chandrasekharan M.B., Hall T.C. (2000): Transgene silencing in monocots. Plant Molecular Biology, 43: 323–346.
Jayaraj J., Punja Z. K. (2007): Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens. Plant Cell Reports, 26, 1539-1546
Kahrizi Danial, Salmanian Ali Hatef, Afshari Afsoon, Moieni Ahmad, Mousavi Amir (2006): Simultaneous substitution of Gly96 to Ala and Ala183 to Thr in 5-enolpyruvylshikimate-3-phosphate synthase gene of E. coli (k12) and transformation of rapeseed (Brassica napus L.) in order to make tolerance to glyphosate. Plant Cell Reports, 26, 95-104
Kalai K., Giczey G., Mészaros A., Dénes F., Balazs E. (2006): Trichoderma chitinase gene expression confers mould resistance. Acta Horticulturae (ISHS), 725: 783–789.
Khan Raham Sher, Sjahril Rinaldi, Nakamura Ikuo, Mii Masahiro (2008): Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications. Plant Biotechnology Reports, 2, 13-20
Liu Mei, Sun Zong-xiu, Zhu Jie, Xu Tong, Harman Gary E., Lorito Matteo (2004): Science Letters: Enhancing rice resistance to fungal pathogens by transformation with cell wall degrading enzyme genes from Trichoderma atroviride. Journal of Zhejiang University SCIENCE, 5, 133-136
Lorito M., Mach R. L., Sposato P., Strauss J., Peterbauer C. K., Kubicek C. P. (1996): Mycoparasitic interaction relieves binding of the Cre1 carbon catabolite repressor protein to promoter sequences of the ech42 (endochitinase-encoding) gene in Trichoderma harzianum. Proceedings of the National Academy of Sciences, 93, 14868-14872
Matroudi S., Zamani M.R., Motallebi M. (2008): Molecular cloning of chitinase 33 (chit33) gene from Trichoderma atroviride. Brazilian Journal of Microbiology, 39, 433-437
Matzke M., Mette M., Matzke A. (2000): Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant Molecular Biology, 43: 401–415.
Maximova Siela N., Marelli Jean-Philippe, Young Ann, Pishak Sharon, Verica Joseph A., Guiltinan Mark J. (2006): Over-expression of a cacao class I chitinase gene in Theobroma cacao L. enhances resistance against the pathogen, Colletotrichum gloeosporioides. Planta, 224, 740-749
Murashige Toshio, Skoog Folke (1962): A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15, 473-497
Pasonen Hanna-Leena, Vihervuori Liisa, Seppänen Sanna-Kaisa, Lyytikäinen-Saarenmaa Päivi, Ylioja Tiina, von Weissenberg Kim, Pappinen Ari (2008): Field performance of chitinase transgenic silver birch (Betula pendula Roth): growth and adaptive traits. Trees, 22, 413-421
Sambrook J., Russell D.W. (2001): Molecular Cloning: A Laboratory Manual. 3rd Ed. New York, Cold Spring Harbor: 1.32–1.38.
Sharma K. K. (1987): Control of organ differentiation from somatic tissues and pollen embryogenesis in anther culture of B. juncea. [PhD Thesis.] University of Delhi.
Wessels J., G., H., Sietsma J., H. (1981): Fungal cell walls: a survey. In: Tanner W., Loewus F. (eds): Encyclopedia of Plant Physiology, New Series, Plant Carbohydrates ΙΙ. Berlin, Springer-Verlag: 352–394.
XIAO Yue-Hua, LI Xian-Bi, YANG Xing-Yong, LUO Ming, HOU Lei, GUO Shao-Hui, LUO Xiao-Ying, PEI Yan (): Cloning and Characterization of a Balsam Pear Class I Chitinase Gene ( Mcchit1 ) and Its Ectopic Expression Enhances Fungal Resistance in Transgenic Plants. Bioscience, Biotechnology and Biochemistry, 71, 1211-1219
download PDF

© 2022 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti