Calcium disodium ethylenediaminetetraacetate as a safe compound for crop protection with the potential to extend the basic substances group

https://doi.org/10.17221/89/2019-PPSCitation:Žabka M. (2020): Calcium disodium ethylenediaminetetraacetate as a safe compound for crop protection with the potential to extend the basic substances group. Plant Protect. Sci., 56: 123-131.
download PDF

Excessive use of commercial synthetic fungicides in agriculture is a globally discussed issue. This topic is seen as particularly important in modern plant protection and cultivation systems, where the total fungicide burden of the agroecosystem should be controlled and reduced. Basic substances (BSs) are a relatively novel, legally recognised group of substances which can be applied. The present study tested calcium disodium ethylenediaminetetraacetate (CaNa2-EDTA), a substance whose properties and environmental safety make it another useful alternative for plant protection in modern farming. The study demonstrated the high antifungal activity of the substance against Pyrenophora (anamorph: Drechslera) tritici-repentis (Died.) Drechsler, (MIC50 0.195–0.223 mg/ml), safety for plant tissue and especially for non-target organisms, and positive effects on the yield of wheat (Triticum aestivum Linnaeus). CaNa2-EDTA surpassed the effect of chitosan hydrochloride, a registered and utilised substance, and a synthetic conventional fungicide. CaNa2-EDTA is an excellent candidate for registering within the BS group, with benefits for environmentally sound systems in plant protection.

References:
Abbott W.S. (1925): A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265–267. https://doi.org/10.1093/jee/18.2.265a
 
Alakomi H.L., Paananen A., Suihko M.L., Helander I.M., Saarela M. (2006): Weakening effect of cell permeabilizers on gram-negative bacteria causing biodeterioration. Applied Environmental Microbiology, 72: 4695–4703.  https://doi.org/10.1128/AEM.00142-06
 
Amborabe B.E., Bonmort J., Fleurat-Lessard P., Roblin G. (2008): Early events induced by chitosan on plant cells. Journal of Experimental Botany, 59: 2317–2324.  https://doi.org/10.1093/jxb/ern096
 
Avenot H.F., Michailides T.J. (2010): Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Protection, 29: 643–651. https://doi.org/10.1016/j.cropro.2010.02.019
 
Brent K.J., Hollomon D.W. (1995): Fungicide resistance in crop pathogens: How can it be managed? Brussels, GIFAP.
 
Cieschi M.T., Benedicto A., Hernández-Apaolaza L., Lucena J.J. (2016): EDTA shuttle effect vs. lignosulfonate direct effect providing Zn to navy bean plants (Phaseolus vulgaris L ‘Negro Polo’) in a calcareous soil. Frontiers in Plant https://doi.org/10.3389/fpls.2016.01767
 
Science, 7: 1767.
 
Datta S., Singh J., Singh S.K., Singh J. (2016): Earthworms, pesticides and sustainable agriculture: a review. Environmental Science and Pollution Research, 23: 8227–8243.  https://doi.org/10.1007/s11356-016-6375-0
 
Dubey N.K., Shukla R., Kumar A., Singh P., Prakash B. (2010): Prospects of botanical pesticides in sustainable agriculture. Current Science, 98: 479–480.
 
Dzoyem J.P., Kechia F.A., Kuete V., Pieme A.C., Akak C.M., Tangmouo J.G., Lohoue P.J. (2011): Phytotoxic, antifungal activities and acute toxicity studies of the crude extract and compounds from Diospyros canaliculata. Natural Product Research, 25: 741–749.  https://doi.org/10.1080/14786419.2010.531392
 
European Food Safety Authority (EFSA) (2017): Outcome of the consultation with Member States and EFSA on the additional information submitted in relation to the basic substance application for talc E553B for use in plant protection as repellent on fruit trees and grapevines. EFSA Supporting Publications, 14, 1277E. https://doi.org/10.2903/sp.efsa.2017.EN-1277
 
El Hadrami A., Adam L.R., El Hadrami I., Daayf F. (2010): Chitosan in plant protection. Marine Drugs, 8: 968–987. https://doi.org/10.3390/md8040968
 
Ernst E. (2000): Chelation therapy for coronary heart disease: An overview of all clinical investigations. American Heart Journal, 140: 139–141.  https://doi.org/10.1067/mhj.2000.107548
 
Finney D.J. (1971): Probit Analysis. London, Cambridge University Press.
 
Flora S.J.S., Mittal M., Mehta A. (2008): Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian Journal of Medical Research, 128: 501.
 
Geiger F., Bengtsson J., Berendse F., Weisser W.W., Emmerson M., Morales M.B., Eggers S. (2010): Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology, 11: 97–105.  https://doi.org/10.1016/j.baae.2009.12.001
 
Goy R.C., Britto D.D., Assis O.B. (2009): A review of the antimicrobial activity of chitosan. Polímeros, 19: 241–247. https://doi.org/10.1590/S0104-14282009000300013
 
Gupta U.C., MacLeod J.A. (1977): Influence of calcium and magnesium sources on boron uptake and yield of alfalfa and rutabagas as related to soil pH. Soil Science, 124: 279–284. https://doi.org/10.1097/00010694-197711000-00004
 
Hadwiger L.A. (2013): Multiple effects of chitosan on plant systems: solid science or hype. Plant Science, 208: 42–49.  https://doi.org/10.1016/j.plantsci.2013.03.007
 
Hachem R., Bahna P., Hanna H., Stephens L.C., Raad I. (2006): EDTA as an adjunct antifungal agent for invasive pulmonary aspergillosis in a rodent model. Antimicrobial Agents Chemotherapy, 50: 1823–1827. https://doi.org/10.1128/AAC.50.5.1823-1827.2006
 
Hancock R.E., Wong P.G. (1984): Compounds which increase the permeability of the Pseudomonas aeruginosa outer membrane. Antimicrobial Agents Chemothe- https://doi.org/10.1128/AAC.26.1.48
 
rapy, 26: 48–52.
 
Hillocks R.J. (2012): Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture.Crop Protection, 31: 85–93. https://doi.org/10.1016/j.cropro.2011.08.008
 
Hola D., Benesova M., Honnerova J., Hnilicka F., Rothova O., Kocova M., Hnilickova H. (2010): The evaluation of photosynthetic parameters in maize inbred lines subjected to water deficiency: Can these parameters be used for the prediction of performance of hybrid progeny? Photosynthetica, 48: 545–558. https://doi.org/10.1007/s11099-010-0072-x
 
Jansirani D., Nivethitha S., Singh M.V.P. (2012): Production and utilization of vermicast using organic wastes and its impact on Trigonella foenum and Phaseolus aureus. International Journal of Research in Biological Sciences, 2: 187–189.
 
Jiménez J.J. (2014): Determination of calcium disodium ethylenediaminetetraacetate (E385) in marketed bottled legumes, artichokes and emulsified sauces by gas chromatography with mass spectrometric detection. Food Chemistry, 152: 81–87.  https://doi.org/10.1016/j.foodchem.2013.11.134
 
Kim H.J., Chen F., Wang X., Rajapakse N.C. (2005): Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). Journal of Agricultural and Food Chemistry, 53: 3696–3701.  https://doi.org/10.1021/jf0480804
 
Kobaisy M., Tellez M.R., Webber C.L., Dayan F.E., Schrader K.K., Wedge, D.E. (2001): Phytotoxic and fungitoxic activities of the essential oil of kenaf (Hibiscus cannabinus L.) leaves and its composition. Journal of Agricultural and Food Chemistry, 49: 3768–3771.  https://doi.org/10.1021/jf0101455
 
Kuklova M., Hnilickova H., Hnilicka F., Kukla J. (2014): Physiological reaction and energy accumulation of dominant plant species in fir-beech ecosystems affected by air pollution. Folia Oecologica, 41: 53–61.
 
Lamari L., Bernier, C.C. (1989). Evaluation of wheat lines and cultivars to tan spot [Pyrenophora tritici-repentis] based on lesion type. Canadian Journal of Plant Pathology, 11: 49–56. https://doi.org/10.1080/07060668909501146
 
Lee C.G., Koo J.C., Park J.K. (2016): Antifungal effect of chitosan as Ca2+ channel blocker. Plant Pathology Journal, 32: 242–250. https://doi.org/10.5423/PPJ.OA.08.2015.0162
 
Lozowicka B. (2015): Health risk for children and adults consuming apples with pesticide residue. Science of the Total Environment, 502: 184–198.  https://doi.org/10.1016/j.scitotenv.2014.09.026
 
Malerba M., Cerana R. (2016): Chitosan effects on plant systems. International Journal of Molecular Sciences, 17: 996. doi: 10.3390/ijms17070996 https://doi.org/10.3390/ijms17070996
 
Marchand P.A. (2015): Basic substances: an opportunity for approval of low-concern substances under EU pesticide regulation. Pest management Science, 71: 1197–1200. https://doi.org/10.1002/ps.3997
 
Moreno M.V., Perelló, A.E. (2010): Occurrence of Pyrenophora tritici-repentis causing Tan Spot in Argentina. In: Arya A., Perelló A.E. (eds): Management of Fungal Plant Pathogens. Cabi: 275–290.
 
OECD (1984): Guideline for Testing of Chemicals No. 207. Earthworm, Acute Toxicity Tests, OECD—Guideline for Testing Chemicals. Paris, France.
 
Özen S., Darcan S. (2011): Effects of environmental endocrine disruptors on pubertal development. Journal of Clinical Research in Pediatric Endocrinology, 3: 1–6.  https://doi.org/10.4274/jcrpe.v3i1.01
 
Rathore H.S., Nollet L.M. (eds.). (2012): Pesticides: evaluation of environmental pollution. Boca Raton, CRC Press.
 
Van De Sande M.M., Wirtz S., Vos E., Verhagen H. (2014): Short review of calcium disodium ethylene diamine tetra acetic acid as a food additive. European Journal of Food Research & Review, 4: 408–423.
 
Vasantha-Srinivasan P., Senthil-Nathan S., Ponsankar A., Thanigaivel A., Chellappandian M., Edwin E.S., Al-Dhabi N.A. (2018): Acute toxicity of chemical pesticides and plant-derived essential oil on the behavior and development of earthworms, Eudrilus eugeniae (Kinberg) and Eisenia fetida (Savigny). Environmental Science and Pollution Research, 25: 10371–10382.  https://doi.org/10.1007/s11356-017-9236-6
 
Verweij P.E., Snelders E., Kema G.H., Mellado E., Melchers W.J. (2009): Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infectious Diseases, 9: 789–795.  https://doi.org/10.1016/S1473-3099(09)70265-8
 
Wang Y., Cang T., Zhao X., Yu R., Chen L., Wu C., Wang Q. (2012): Comparative acute toxicity of twenty-four insecticides to earthworm, Eisenia fetida. Ecotoxicology and Environmental Safety, 79: 122–128.  https://doi.org/10.1016/j.ecoenv.2011.12.016
 
Žabka M., Pavela R. (2013): Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi. Chemosphere, 93: 1051–1056.  https://doi.org/10.1016/j.chemosphere.2013.05.076
 
Žabka M., Pavela R., Prokinová E. (2014): Antifungal activity and chemical composition of twenty essential oils against significant indoor and outdoor toxigenic and aeroallergenic fungi. Chemosphere, 112: 443–448.  https://doi.org/10.1016/j.chemosphere.2014.05.014
 
Žabka M., Pavela R., Slezáková L. (2009): Antifungal effect of Pimenta dioica essential oil against dangerous pathogenic and toxinogenic fungi. Industrial Crops and Products, 30: 250–253.  https://doi.org/10.1016/j.indcrop.2009.04.002
 
Žabka M., Pavela R., Prokinová E. (2014): Antifungal activity and chemical composition of twenty essential oils against significant indoor and outdoor toxigenic and aeroallergenic fungi. Chemosphere, 112: 443–448. https://doi.org/10.1016/j.chemosphere.2014.05.014
 
Žabka M., Pavela R. (2018): Effectiveness of environmentally safe food additives and food supplements in an in vitro growth inhibition of significant Fusarium, Aspergillus and Penicillium species. Plant Protection Science, 54: 163–173. https://doi.org/10.17221/86/2017-PPS
 
Zadoks J.C., Chang T.T., Konzak C.F. (1974): A decimal code for the growth of cereals. Weed Research, 14: 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x
 
Abbott W.S. (1925): A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265–267. https://doi.org/10.1093/jee/18.2.265a
 
Alakomi H.L., Paananen A., Suihko M.L., Helander I.M., Saarela M. (2006): Weakening effect of cell permeabilizers on gram-negative bacteria causing biodeterioration. Applied Environmental Microbiology, 72: 4695–4703.  https://doi.org/10.1128/AEM.00142-06
 
Amborabe B.E., Bonmort J., Fleurat-Lessard P., Roblin G. (2008): Early events induced by chitosan on plant cells. Journal of Experimental Botany, 59: 2317–2324.  https://doi.org/10.1093/jxb/ern096
 
Avenot H.F., Michailides T.J. (2010): Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Protection, 29: 643–651. https://doi.org/10.1016/j.cropro.2010.02.019
 
Brent K.J., Hollomon D.W. (1995): Fungicide resistance in crop pathogens: How can it be managed? Brussels, GIFAP.
 
Cieschi M.T., Benedicto A., Hernández-Apaolaza L., Lucena J.J. (2016): EDTA shuttle effect vs. lignosulfonate direct effect providing Zn to navy bean plants (Phaseolus vulgaris L ‘Negro Polo’) in a calcareous soil. Frontiers in Plant https://doi.org/10.3389/fpls.2016.01767
 
Science, 7: 1767.
 
Datta S., Singh J., Singh S.K., Singh J. (2016): Earthworms, pesticides and sustainable agriculture: a review. Environmental Science and Pollution Research, 23: 8227–8243.  https://doi.org/10.1007/s11356-016-6375-0
 
Dubey N.K., Shukla R., Kumar A., Singh P., Prakash B. (2010): Prospects of botanical pesticides in sustainable agriculture. Current Science, 98: 479–480.
 
Dzoyem J.P., Kechia F.A., Kuete V., Pieme A.C., Akak C.M., Tangmouo J.G., Lohoue P.J. (2011): Phytotoxic, antifungal activities and acute toxicity studies of the crude extract and compounds from Diospyros canaliculata. Natural Product Research, 25: 741–749.  https://doi.org/10.1080/14786419.2010.531392
 
European Food Safety Authority (EFSA) (2017): Outcome of the consultation with Member States and EFSA on the additional information submitted in relation to the basic substance application for talc E553B for use in plant protection as repellent on fruit trees and grapevines. EFSA Supporting Publications, 14, 1277E. https://doi.org/10.2903/sp.efsa.2017.EN-1277
 
El Hadrami A., Adam L.R., El Hadrami I., Daayf F. (2010): Chitosan in plant protection. Marine Drugs, 8: 968–987. https://doi.org/10.3390/md8040968
 
Ernst E. (2000): Chelation therapy for coronary heart disease: An overview of all clinical investigations. American Heart Journal, 140: 139–141.  https://doi.org/10.1067/mhj.2000.107548
 
Finney D.J. (1971): Probit Analysis. London, Cambridge University Press.
 
Flora S.J.S., Mittal M., Mehta A. (2008): Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian Journal of Medical Research, 128: 501.
 
Geiger F., Bengtsson J., Berendse F., Weisser W.W., Emmerson M., Morales M.B., Eggers S. (2010): Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology, 11: 97–105.  https://doi.org/10.1016/j.baae.2009.12.001
 
Goy R.C., Britto D.D., Assis O.B. (2009): A review of the antimicrobial activity of chitosan. Polímeros, 19: 241–247. https://doi.org/10.1590/S0104-14282009000300013
 
Gupta U.C., MacLeod J.A. (1977): Influence of calcium and magnesium sources on boron uptake and yield of alfalfa and rutabagas as related to soil pH. Soil Science, 124: 279–284. https://doi.org/10.1097/00010694-197711000-00004
 
Hadwiger L.A. (2013): Multiple effects of chitosan on plant systems: solid science or hype. Plant Science, 208: 42–49.  https://doi.org/10.1016/j.plantsci.2013.03.007
 
Hachem R., Bahna P., Hanna H., Stephens L.C., Raad I. (2006): EDTA as an adjunct antifungal agent for invasive pulmonary aspergillosis in a rodent model. Antimicrobial Agents Chemotherapy, 50: 1823–1827. https://doi.org/10.1128/AAC.50.5.1823-1827.2006
 
Hancock R.E., Wong P.G. (1984): Compounds which increase the permeability of the Pseudomonas aeruginosa outer membrane. Antimicrobial Agents Chemothe- https://doi.org/10.1128/AAC.26.1.48
 
rapy, 26: 48–52.
 
Hillocks R.J. (2012): Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture.Crop Protection, 31: 85–93. https://doi.org/10.1016/j.cropro.2011.08.008
 
Hola D., Benesova M., Honnerova J., Hnilicka F., Rothova O., Kocova M., Hnilickova H. (2010): The evaluation of photosynthetic parameters in maize inbred lines subjected to water deficiency: Can these parameters be used for the prediction of performance of hybrid progeny? Photosynthetica, 48: 545–558. https://doi.org/10.1007/s11099-010-0072-x
 
Jansirani D., Nivethitha S., Singh M.V.P. (2012): Production and utilization of vermicast using organic wastes and its impact on Trigonella foenum and Phaseolus aureus. International Journal of Research in Biological Sciences, 2: 187–189.
 
Jiménez J.J. (2014): Determination of calcium disodium ethylenediaminetetraacetate (E385) in marketed bottled legumes, artichokes and emulsified sauces by gas chromatography with mass spectrometric detection. Food Chemistry, 152: 81–87.  https://doi.org/10.1016/j.foodchem.2013.11.134
 
Kim H.J., Chen F., Wang X., Rajapakse N.C. (2005): Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). Journal of Agricultural and Food Chemistry, 53: 3696–3701.  https://doi.org/10.1021/jf0480804
 
Kobaisy M., Tellez M.R., Webber C.L., Dayan F.E., Schrader K.K., Wedge, D.E. (2001): Phytotoxic and fungitoxic activities of the essential oil of kenaf (Hibiscus cannabinus L.) leaves and its composition. Journal of Agricultural and Food Chemistry, 49: 3768–3771.  https://doi.org/10.1021/jf0101455
 
Kuklova M., Hnilickova H., Hnilicka F., Kukla J. (2014): Physiological reaction and energy accumulation of dominant plant species in fir-beech ecosystems affected by air pollution. Folia Oecologica, 41: 53–61.
 
Lamari L., Bernier, C.C. (1989). Evaluation of wheat lines and cultivars to tan spot [Pyrenophora tritici-repentis] based on lesion type. Canadian Journal of Plant Pathology, 11: 49–56. https://doi.org/10.1080/07060668909501146
 
Lee C.G., Koo J.C., Park J.K. (2016): Antifungal effect of chitosan as Ca2+ channel blocker. Plant Pathology Journal, 32: 242–250. https://doi.org/10.5423/PPJ.OA.08.2015.0162
 
Lozowicka B. (2015): Health risk for children and adults consuming apples with pesticide residue. Science of the Total Environment, 502: 184–198.  https://doi.org/10.1016/j.scitotenv.2014.09.026
 
Malerba M., Cerana R. (2016): Chitosan effects on plant systems. International Journal of Molecular Sciences, 17: 996. doi: 10.3390/ijms17070996 https://doi.org/10.3390/ijms17070996
 
Marchand P.A. (2015): Basic substances: an opportunity for approval of low-concern substances under EU pesticide regulation. Pest management Science, 71: 1197–1200. https://doi.org/10.1002/ps.3997
 
Moreno M.V., Perelló, A.E. (2010): Occurrence of Pyrenophora tritici-repentis causing Tan Spot in Argentina. In: Arya A., Perelló A.E. (eds): Management of Fungal Plant Pathogens. Cabi: 275–290.
 
OECD (1984): Guideline for Testing of Chemicals No. 207. Earthworm, Acute Toxicity Tests, OECD—Guideline for Testing Chemicals. Paris, France.
 
Özen S., Darcan S. (2011): Effects of environmental endocrine disruptors on pubertal development. Journal of Clinical Research in Pediatric Endocrinology, 3: 1–6.  https://doi.org/10.4274/jcrpe.v3i1.01
 
Rathore H.S., Nollet L.M. (eds.). (2012): Pesticides: evaluation of environmental pollution. Boca Raton, CRC Press.
 
Van De Sande M.M., Wirtz S., Vos E., Verhagen H. (2014): Short review of calcium disodium ethylene diamine tetra acetic acid as a food additive. European Journal of Food Research & Review, 4: 408–423.
 
Vasantha-Srinivasan P., Senthil-Nathan S., Ponsankar A., Thanigaivel A., Chellappandian M., Edwin E.S., Al-Dhabi N.A. (2018): Acute toxicity of chemical pesticides and plant-derived essential oil on the behavior and development of earthworms, Eudrilus eugeniae (Kinberg) and Eisenia fetida (Savigny). Environmental Science and Pollution Research, 25: 10371–10382.  https://doi.org/10.1007/s11356-017-9236-6
 
Verweij P.E., Snelders E., Kema G.H., Mellado E., Melchers W.J. (2009): Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infectious Diseases, 9: 789–795.  https://doi.org/10.1016/S1473-3099(09)70265-8
 
Wang Y., Cang T., Zhao X., Yu R., Chen L., Wu C., Wang Q. (2012): Comparative acute toxicity of twenty-four insecticides to earthworm, Eisenia fetida. Ecotoxicology and Environmental Safety, 79: 122–128.  https://doi.org/10.1016/j.ecoenv.2011.12.016
 
Žabka M., Pavela R. (2013): Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi. Chemosphere, 93: 1051–1056.  https://doi.org/10.1016/j.chemosphere.2013.05.076
 
Žabka M., Pavela R., Prokinová E. (2014): Antifungal activity and chemical composition of twenty essential oils against significant indoor and outdoor toxigenic and aeroallergenic fungi. Chemosphere, 112: 443–448.  https://doi.org/10.1016/j.chemosphere.2014.05.014
 
Žabka M., Pavela R., Slezáková L. (2009): Antifungal effect of Pimenta dioica essential oil against dangerous pathogenic and toxinogenic fungi. Industrial Crops and Products, 30: 250–253.  https://doi.org/10.1016/j.indcrop.2009.04.002
 
Žabka M., Pavela R., Prokinová E. (2014): Antifungal activity and chemical composition of twenty essential oils against significant indoor and outdoor toxigenic and aeroallergenic fungi. Chemosphere, 112: 443–448. https://doi.org/10.1016/j.chemosphere.2014.05.014
 
Žabka M., Pavela R. (2018): Effectiveness of environmentally safe food additives and food supplements in an in vitro growth inhibition of significant Fusarium, Aspergillus and Penicillium species. Plant Protection Science, 54: 163–173. https://doi.org/10.17221/86/2017-PPS
 
Zadoks J.C., Chang T.T., Konzak C.F. (1974): A decimal code for the growth of cereals. Weed Research, 14: 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x
 
download PDF

© 2020 Czech Academy of Agricultural Sciences