Efficacy of Bacillus thuringiensis Cry14 toxin against root knot nematode, Meloidogyne javanica 

https://doi.org/10.17221/93/2013-PPSCitation:Baghaee Ravari S., Mahdikhani Moghaddam E. (2015): Efficacy of Bacillus thuringiensis Cry14 toxin against root knot nematode, Meloidogyne javanica . Plant Protect. Sci., 51: 46-51.
download PDF
Two Bacillus thuringiensis strains including ToIr65 and ToIr67 with nematicidal activity against hatched juveniles and eggs of Meloidogyne javanica were identified by phenotypic, microscopic, 16s rDNA sequencing and nematode cry gene specific PCR. Two forms of bacterial isolates including bacterial suspension (BS) and spore/crystal mixture (SCM) were tested in lab and pot conditions to evaluate their efficacy in M. javanica management. The BS of ToIr65 and ToIr67 showed 70% nematicidal activity in comparison to SCM in vitro. In pot experiments, two forms of ToIr65 significantly (by 51%) decreased number of gall over infested control and also increased growth parameters on tomato plants, but ToIr67 did not. Our results suggested that Bt-ToIr65 could be employed as a biocontrol agent for the management of M. javanica.
References:
Barker K.R. (1985): Nematode extractions and bioassays. In: Barker K.R., Carter C.C., Sasser J.N. (eds): An Advanced Treatise on Meloidogyne Methodology. Vol. II. Raleigh, North Carolina State University Graphics: 19–35.
 
Bravo Alejandra, Gómez Isabel, Porta Helena, García-Gómez Blanca Ines, Rodriguez-Almazan Claudia, Pardo Liliana, Soberón Mario (2013): Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microbial Biotechnology, 6, 17-26  https://doi.org/10.1111/j.1751-7915.2012.00342.x
 
Carneiro R.M., De Souza I.S., Belarmino L.C. (1998): Nematicidal activity of Bacillus spp. strains on juveniles of Meloidogyne javanica. Nematology Mediterranean, 22: 12–21.
 
Crickmore Neil (2005): Using worms to better understand how Bacillus thuringiensis kills insects. Trends in Microbiology, 13, 347-350  https://doi.org/10.1016/j.tim.2005.06.002
 
Crickmore N., Zeigler D.R., Schnepf E., Van Rie J., Lereclus D., Baum J., Bravo A., Dean D.H. (2011): Bacillus thurin-giensis toxin nomenclature. Available at http://www.lifesci. sussex.ac.uk/Home/Neil_Crickmore/Bt/
 
Devidas Premachandran, Rehberger Linda A. (1992): The effects of exotoxin (Thuringiensin) from Bacillus thuringiensis on Meloidogyne incognita and Caenorhabditis elegans. Plant and Soil, 145, 115-120  https://doi.org/10.1007/BF00009547
 
Ejiofor A O, Johnson T (2002): Physiological and molecular detection of crystalliferous Bacillus thuringiensis strains from habitats in the South Central United States. Journal of Industrial Microbiology and Biotechnology, 28, 284-290  https://doi.org/10.1038/sj.jim.7000244
 
Hussey R.S., Barker K.R. (1973): A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Report, 57: 1025–1028.
 
Lecadet Marguerite-M., Dedonder Raymond (1971): Biogenesis of the Crystalline Inclusion of Bacillus thuringiensis during Sporulation. European Journal of Biochemistry, 23, 282-294  https://doi.org/10.1111/j.1432-1033.1971.tb01620.x
 
Leyns F., Borgoni G., Arnaut G., De Waele D. (1995): Nematicidal activity of Bacillus thuringiensis isolates. Fundamental Applied Nematology, 18: 211–218.
 
Logan N.A., De Vos P. (2006): Genus I. Bacillus Cohn 1872, 174AL. In: De Vos P., Garrity G., Jones D., Krieg N.R., Ludwig W., Rainey F.A., Schleifer K.-H., Whitman W. (eds): Bergey’s Manual of Systematic Bacteriology. Vol. 3: The Firmicutes. 2nd Ed. Dordrecht, Springer: 21–128.
 
Mahdikhani-Moghaddam E., Kheyri A., Mohammadi M., Eshtiyaghi H., Okhovat M. (2003): Introduction of three new species of Meloidogyne genus for Iran. Journal of Plant Pathology, 39: 189–211.
 
Mohammed S.H., Anwer El Saedy M., Enan M.R., Ibrahim N.I., Ghareeb A., Moustafa S.A. (2008): Biocontrol efficiency of Bacillus thuringiensis toxins against root-knot nematode, Meloidogyne incognita. Journal of cellular and Molecular Biology, 7: 57–66.
 
Noling J.W., Becker J.O. (1994): The challenge of research and extension to define and implement alternatives to methyl bromide. Journal of Nematology, 26: 573–586.
 
Ongena M., Jacques Ph. (2007): Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16: 115–125.
 
Peng Donghai, Chai Lujun, Wang Fenshan, Zhang Fengjuan, Ruan Lifang, Sun Ming (2011): Synergistic activity between Bacillus thuringiensis Cry6Aa and Cry55Aa toxins against Meloidogyne incognita. Microbial Biotechnology, 4, 794-798  https://doi.org/10.1111/j.1751-7915.2011.00295.x
 
Raddadi Noura, Cherif Ameur, Ouzari Hadda, Marzorati Massimo, Brusetti Lorenzo, Boudabous Abdellatif, Daffonchio Daniele (2007): Bacillus thuringiensis beyond insect biocontrol: plant growth promotion and biosafety of polyvalent strains. Annals of Microbiology, 57, 481-494  https://doi.org/10.1007/BF03175344
 
Ramezani Moghaddam M., Mahdikhani Moghaddam E., Baghaee Ravari S., Rouhani H. (): The nematicidal potential of local Bacillus species against the root-knot nematode infecting greenhouse tomatoes. Biocontrol Science and Technology, 24, 279-290  https://doi.org/10.1080/09583157.2013.858100
 
Sadeghi Z., Mahdikhani Moghadam E., Azizi M. (2012): Evalution of plant products to control Meloidogyne javanica on tomato. Iranian Journal of Plant Pathology, 48: 155–163.
 
Salehi Jouzani Gholamreza, Seifinejad Ali, Saeedizadeh Abbas, Nazarian Amin, Yousefloo Majid, Soheilivand Saeed, Mousivand Maryam, Jahangiri Rosa, Yazdani Mehdi, Amiri Reza Maali, Akbari Sepideh (2008): Molecular detection of nematicidal crystalliferous Bacillus thuringiensis strains of Iran and evaluation of their toxicity on free-living and plant-parasitic nematodes. Canadian Journal of Microbiology, 54, 812-822  https://doi.org/10.1139/W08-074
 
Schnepf H. E., Lee S., Dojillo J., Burmeister P., Fencil K., Morera L., Nygaard L., Narva K. E., Wolt J. D. (): Characterization of Cry34/Cry35 Binary Insecticidal Proteins from Diverse Bacillus thuringiensis Strain Collections. Applied and Environmental Microbiology, 71, 1765-1774  https://doi.org/10.1128/AEM.71.4.1765-1774.2005
 
Sharma R.D. (1994): Bacillus thuringiensis a biocontrol agent of Meloidogyne incognita on barley. Nematologia Brasileira, 18: 79–84.
 
Shokoohi E., Kheiri A., Etebarian H.R., Roostaei A. (2004): Interactions between root-knot nematode Meloidogyne javanica and Fusarium wilt disease, Fusarium oxysporum f.sp. melonis in different varieties of melon. Communication in Agriculture and Applied Biological Sciences, 69: 387–391.
 
Sikora R.A., Fernandez E. (2005): Nematode parasites of vegetables. In: Luc M., Sikora R.A., Bridge J. (eds): Plant-Parasitic Nematodes in Subtropical and Tropical Agriculture. Wallingford, CABI Publishing: 319–392.
 
Norabadi Maryem Tavakol, Sahebani Navazollah, Etebarian Hassan Reza (): Biological control of root-knot nematode ( Meloidogyne javanica ) disease by Pseudomonas fluorescens (Chao). Archives Of Phytopathology And Plant Protection, 47, 615-621  https://doi.org/10.1080/03235408.2013.816102
 
Wei J., Hale K., Carta L., Platzer E., Wong C., Fang S., Aroian V. (2003): Bacillus thurigiensis crystal proteins that target nematode. Microbiology, 100: 2760–2765.
 
Araújo Welington Luiz, Angellis Derlene Attili de, Azevedo João Lúcio (2004): Direct RAPD evaluation of bacteria without conventional DNA extraction. Brazilian Archives of Biology and Technology, 47, 375-380  https://doi.org/10.1590/S1516-89132004000300006
 
Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. (1991): 16S Ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173: 697–703.
 
Zhang Fengjuan, Peng Donghai, Ye Xiaobo, Yu Ziquan, Hu Zhenfei, Ruan Lifang, Sun Ming, Winter Carlos Eduardo (2012): In Vitro Uptake of 140 kDa Bacillus thuringiensis Nematicidal Crystal Proteins by the Second Stage Juvenile of Meloidogyne hapla. PLoS ONE, 7, e38534-  https://doi.org/10.1371/journal.pone.0038534
 
Zuckerman Bert M., Dicklow M. Bess, Acosta Nelia (1993): A Strain of Bacillus thuringiensis for the Control of Plant‐parasitic Nematodes. Biocontrol Science and Technology, 3, 41-46  https://doi.org/10.1080/09583159309355257
 
download PDF

© 2019 Czech Academy of Agricultural Sciences