Developing a decision support tool to forecast the abundance of the cabbage stem weevil in winter oilseed rape

https://doi.org/10.17221/93/2019-PPSCitation:

Eickermann M., Ronellenfitsch F.K., Junk J. (2020): Developing a decision support tool to forecast the abundance of the cabbage stem weevil in winter oilseed rape. Plant Protect. Sci., 56: 285–291. 

download PDF

Reducing the use of pesticides in agricultural systems is a prerequisite for sustainable agriculture and, therefore, knowledge on the factors that influence the regional insect pest densities is necessary. Based on multi-site and multi-annual observations of the cabbage stem weevil [Ceutorhynchus pallidactylus (Marsham, 1802)] in winter oilseed rape (Brassica napus Linnaeus) and the corresponding meteorological measurements, a statistical relationship for forecasting the abundance was derived. The model explains 84% of the variation of the data set. The remaining 16% might be explained by the landscape effects and agricultural practices, such as crop protection. Based on the statistical relationship between the mean winter air temperature and the abundance of the cabbage stem weevil in the winter oilseed rape, risk maps were derived as a forecast tool for practical farming.

References:
Bale J.S., Masters G.J., Hodkinson I.D., Awmack C., Bezemer T.M., Brown V.K., Butterfield J., Buse A., Coulson J.C., Farrar J., Good J.E.G., Harrington R., Hartley S., Jones T.H., Lindroth R.L., Press M.C., Symrnioudis I., Watt A.D., Whittaker J. (2002): Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8: 1–16. https://doi.org/10.1046/j.1365-2486.2002.00451.x
 
Beyer M., El Jarroudi M., Junk J., Pogoda F., Dubos T., Görgen K., Hoffmann L. (2012): Spring air temperature accounts for the bimodal temporal distribution of Septoria tritici epidemics in the winter wheat stands of Luxembourg. Crop Protection, 42: 250–255.  https://doi.org/10.1016/j.cropro.2012.07.015
 
Damos P. (2015): Modular structure of web-based decision support systems for integrated pest management. A review. Agronomy for Sustainable Development, 35: 1347–1372. https://doi.org/10.1007/s13593-015-0319-9
 
Eickermann M., Ulber B. (2010): Screening of oilseed rape and other brassicaceous genotypes for susceptibility to Ceutorhynchus pallidactylus (Mrsh.). Journal of Applied Entomology, 134: 542–550.
 
Eickermann M., Junk J., Görgen K., Hoffmann L., Beyer M. (2013): Ensemble-based analysis of regional climate change effects on the pod midge (Dasineura brassicae Winn.) in oilseed rape, IOBC/wprs Bulletin.
 
Eickermann M., Ulber B., Hoffmann L., Junk J. (2014a): Improving phenological forecasting models for rape stem weevil, Ceutorhynchus napi Gyll., based on long-term multi-site datasets. Journal of Applied Entomology, 138: 754–762. https://doi.org/10.1111/jen.12129
 
Eickermann M., Beyer M., Goergen K., Hoffmann L., Junk J. (2014b). Shifted migration of the rape stem weevil (Ceutorhynchusnapi) linked to climate change. European Journal of Entomology, 111: 243–250. https://doi.org/10.14411/eje.2014.018
 
Eickermann M., Junk J., Hoffmann L., Beyer M. (2015): Forecasting the breaching of the control threshold for Ceutorhynchus pallidactylus in oilseed rape. Agricultural ad Forest Entomology, 17: 71–76. https://doi.org/10.1111/afe.12082
 
Ferguson A.W., Skellern M.P., Andreas J., von Richthofen J.-S., Watts N.P., Bardsley E., Murray D.A., Cook S.M. (2015): The potential of decision support systems to improve risk assessment for pollen beetle management in winter oilseed rape. Pest Management Science, 72: 609–617.  https://doi.org/10.1002/ps.4069
 
Hahn D.A., Denlinger D.L. (2011): Energetics of insect diapause. Annual Review of Entomology, 56: 103–121. https://doi.org/10.1146/annurev-ento-112408-085436
 
Hervé M. (2017): Breeding for insect resistance in oilseed rape: Challenges, current knowledge and perspectives. Plant Breeding, 137: 27–34. https://doi.org/10.1111/pbr.12552
 
Juhel A.S., Barbu C.M., Franck P., Roger-Estrade J., Butier A., Bazot M., Valantin-Morison M. (2017): Characterization of the pollen beetle, Brassicogethes aeneus, dispersal from woodlands to winter oilseed rape fields. PLoS ONE 12(8): doi: e0183878.  https://doi.org/10.1371/journal.pone.0183878
 
Junk J., Eickermann M., Görgen K., Beyer M., Hoffmann L. (2012): Ensemble-based analysis of regional climate change effects on the cabbage stem weevil (Ceutorhynchus pallidactylus (Mrsh.)) in winter oilseed rape (Brassica napus L.). The Journal of Agricultural Science, 150: 191–202.  https://doi.org/10.1017/S0021859611000529
 
Junk J., Jonas M., Eickermann M. (2016): Assessing meteorological key factors influencing crop invasion by pollen beetle (Meligethes aeneus F.) – past observations and future perspectives. Meteorologische Zeitschrift, 25: 357–364. https://doi.org/10.1127/metz/2015/0665
 
Juran I., Gotling Čuljak T., Grubišić D. (2011): Rape Stem Weevil (Ceutorhynchus napi Gyll. 1837) and Cabbage Stem Weevil (Ceutorhynchus pallidactylus Marsh. 1802) (Coleoptera: Curculionidae) – Important Oilseed Rape Pests. Agriulturae Conspectus Scientificus, 76: 93–100.
 
Klueken A.M., Hau B., Ulber B., Poehling H.-M. (2009): Forecasting migration of cereal aphids (Hemiptera: Aphididae) in autumn and spring. Journal of Applied Entomology, 133: 328–344. https://doi.org/10.1111/j.1439-0418.2009.01387.x
 
Klem K., Spitzer T. (2017): Prediction model for cabbage stem weevil Ceutorhynchus pallidactylus Mrsh. occurrence on winter rape based on an artificial neural network Agricultural and Forest Entomology 19: 302–308.
 
Lefebvre M., Langrell S.R.H., Gomez-y-Paloma S. (2015): Incentives and policies for integrated pest management in Europe: a review. Agronomy for Sustainable Development, 35: 27–45. https://doi.org/10.1007/s13593-014-0237-2
 
Moser D., Drapela T., Zaller J.G., Frank T. (2009): Interacting effects of wind direction and resource distribution on insect pest densities. Basic and Applied Ecology, 10: 208–215. https://doi.org/10.1016/j.baae.2008.03.008
 
Rusch A., Valantin-Morison M., Roger-Estrade J., Sarthou J.-P. (2012): Local and landscape determinants of pollen beetle abundance in overwintering habitats. Agriculturad and Forest Entomology, 14: 37–47.  https://doi.org/10.1111/j.1461-9563.2011.00547.x
 
Rusch A., Valantin-Morison M., Sarthou J.P., Roger-Estrade J. (2013): Effect of crop management and landscape context on insect pest populations and crop damage. Agriculture, Ecosystems and Environment, 166: 118–125. https://doi.org/10.1016/j.agee.2011.05.004
 
Schütte F (1970): Nutzung von Schwellenwerten für langfristige Prognosen. Journal of Plant Disease and Plant Protection, 77: 648–655.
 
Spitzer T., Matušinský P., Spitzerová D., Bílovský J., Kazda J: (2014). Effect of flight activity of stem weevils (Ceutorhynchus napi, C. pallidactylus) and application time on insecticide efficacy and yield of winter oilseed rape. Plant Protection Science, 50: 129–134.
 
Venäläinen A., Heikinheimo M. (2002): Meteorological data for agricultural applications. Physics and Chemistry of the Earth, Parts A/B/C, 27: 1045–1050. https://doi.org/10.1016/S1474-7065(02)00140-7
 
Williams I.H. (2010): The major insect pests of oilseed rape in Europe and their management: An Overview. In: Williams I.H. (ed.): Biocontrol-Based Integrated Management of Oilseed Rape Pests. Dordrecht, Springer.
 
Witten, I.H., Frank, E., Hall, M.A. (2011): Data Mining: Practical Machine Learning Tools and Techniques. 3rd ed., Burlington, Morgan Kaufmann.
 
Zaller J.G., Moser D., Drapela T., Schmöger C., Frank T. (2008): Insect pests in winter oilseed rape affected by field and landscape characteristics. Basic and Applied Ecology, 9: 682–690. https://doi.org/10.1016/j.baae.2007.10.004
 
download PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti