Selectivity and efficacy of herbicides dimethachlor and pethoxamid in rocket crop

Doležalová I., Petrželová I., Duchoslav M. (2020): Selectivity and efficacy of herbicides dimethachlor and pethoxamid in rocket crop. Plant. Protect. Sci., 56: 305–316.

supplementary materialdownload PDF

Field experiments were conducted to evaluate the efficacy, selectivity and health harmlessness of four application rates of two pre-emergent herbicides (pethoxamid and dimethachlor) in the rocket [Eruca vesicaria (L.) Cavanilles)]. Pethoxamid was found to be less efficient on the total weed density (efficacy 86.0–93.3%) in comparison with the effect of dimethachlor (94.9–95.8%). Dimethachlor expressed an excellent efficacy on Echinochloa crus-galli (L.) P. Beauvois, Portulaca oleracea Linnaeus, Amaranthus retroflexus Linnaeus, Lamium purpureum Linnaeus, and Veronica persica Poiret from the lowest tested application rate (800 g/ha). Pethoxamid showed an excellent efficacy on E. crus-galli, Lamium purpureum, Lamium amplexicaule Linnaeus, V. persica, and P. oleracea. In higher application rates, pethoxamid controlled Chenopodium polyspermum Linnaeus and Chenopodium album Linnaeus. In contrast to mostly negative effects of dimethachlor, pethoxamid showed either no effects or positive ones on the rocket yield. Residues of both herbicides in the harvested product were always below a 'default limit', which is the baseline maximum residue level for food. The selectivity of pethoxamid at an application rate of 960 g/ha was good, herbicide residues in the rocket were not detected and the yield of the rocket increased.

Anonymous (2002): Monograph Pethoxamid. Vol. 3. Annex B-3: Data on application and further information. Available at (accessed Jul 20, 2020).
Anonymous (2005): Regulation (EC) No. 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC.
Anonymous (2014): List of authorized plant protection products and other means of plant protection 2014. Bulletin of the Central Institute for Supervising and Testing in Agriculture, 1: 1, 2014. Available at (accessed Mar 3, 2019).
Anonymous (2017): Pesticide Residue Monitoring Program - Fiscal Year 2017 Pesticide Report. U.S. Food and Drug Administration. Available at (accessed Mar 2, 2020).
Anonymous (2020): BS EN 15662: 2008. Foods of plant origin - Multimethod for the determination of pesticide residues using GC- and LC-based analysis following acetonitrile extraction/partitioning and clean-up by dispersive SPE - Modular QuEChERS-method. Available at (accessed Jul 20, 2020).
Böger P., Matthes B., Schmalfuß J. (2000): Towards the primary target of chloroacetamides – new findings pave the way. Pest Management Science, 56: 497–508.<497::AID-PS169>3.0.CO;2-W
Damalas C.A., Eleftherohorinos I.G. (2011): Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, 8: 1402–1419.
Dimson E.V. (2001): Crop Profile for Arugula in Arizona. The Crop Profile/IPM database. Available at (accessed Dec 10, 2019).
Doležalová I., Duchoslav M., Dušek K. (2013): Biology and yield of rocket (Eruca sativa Mill.) under field conditions of the Czech Republic (Central Europe). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41: 530–537.
Doležalová I., Koprna R., Petrželová I., Duchoslav M. (2014): Možné způsoby chemické ochrany rokety seté – předběžná studie. Aktuální poznatky v pěstování, šlechtění, ochraně rostlin a zpracování produktů. Úroda, 12: 517–520.
EFSA (European Food Safety Authority) (2018): The 2016 European Union report on pesticide residues in food. EFSA Journal, 16: 5348. doi: 10.2903/j.efsa.2018.5348
Gaba S., Gabriel E., Chadœuf J., Bonneu F., Bretagnolle V. (2016): Herbicides do not ensure for higher wheat yield, but eliminate rare plant species. Scientific Reports, 6: 30112. doi: 10.1038/srep30112
Gallandt E.R., Weiner J. (2015): Crop-weed competition. Encyclopedia of Life Sciences, 2nd ed. Chichester, John Wiley & Sons, Ltd.
Gerhards R., Gutjahr C., Weis M., Keller M., Sökefeld M., Möhring J., Piepho H.P. (2011): Using precision farming technology to quantify yield effects attributed to weed competition and herbicide application. Weed Research, 52: 6–15.
Hensel D.R. (2005): Nondetects and Data Analysis: Statistics for Censored Environmental Data. Hoboken, John Wiley & Sons.
Holmstrom K.E. (2008): Crop profile for Arugula in New Jersey. National IPM Database. Available at (accessed Dec 15, 2019).
HRAC (2010): The World of Herbicides. According to HRAC classification on mode of action 2010. Available at (accessed Nov 19, 2019).
Hunt B., Barrentine J., Hayden T. et al. (2015): Pethoxamid — a new herbicide for use in agronomic and horticultural crops. In: Proceedings of 55th Annual Meeting of Weed Science Society of America, Lexington, Feb 9–12, 2015: 281.
Jursík M., Soukup J., Holec J., Andr J., Hamouzová K. (2015): Efficacy and selectivity of pre-emergent sunflower herbicides under different soil moisture conditions. Plant Protection Science, 51: 214–222.
Kato S., Kitajima T., Okamoto H., Kobutani T. (2001): Pethoxamid – a novel selective herbicide for maize and soybean. In: Brighton Crop Protection Conference Weeds, 1, British Crop Protection Council, Brighton, Nov 12–15, 2001: 23–28.
Keikotlhaile B.M., Spanoghe P. (2011): Pesticide residues in fruits and vegetables. In: Stoytcheva, M. (ed.): Pesticides: Formulations, Effects, Fate. Rijeka, InTech: 243–252.
Legendre P., Legendre, L. (2012): Numerical Ecology. 3rd English ed. Amsterdam, Elsevier Science BV.
Lepš J., Šmilauer P. (2014): Multivariate Analysis of Ecological Data using Canoco. 2nd Ed. Cambridge, Cambridge University Press.
Nicolopoulou-Stamati P., Maipas S., Kotampasi C., Stamatis P., Hens L. (2016): Chemical pesticides and human health: The urgent need for a new concept in agriculture. Frontiers in Public Health, 4: 148. doi: 10.3389/fpubh.2016.00148
OEPP/EPPO (2007): Weeds in brassica oil crops, PP1/049(3). OEPP/EPPO Bulletin, 37: 36–39.
Padulosi S. (1995): Rocket Genetic Resources Network. Report of the First Meeting, Lisbon, Nov 13–15, 1994: 1–70.
Pannacci E., Onofri A. (2016): Alternatives to terbuthylazine for chemical weed control in maize. Communication in Biometry Crop Science, 11: 51–63.
PPDB (2020): The Pesticide Properties Database (PPDB) developed by the Agriculture & Environment Research Unit (AERU), University of Hertfordshire. Available at (accessed Jul 20, 2020).
Ritter C., Dicke D., Weis M., Oebel H., Piepho H.P., Büchse A., Gerhards R. (2008): An on-farm approach to quantify yield variation and to derive decision rules for site-specific weed management. Precision Agriculture, 9: 133–146.
Soltani N., Brown L.R., Sikkema P.H. (2019): Weed Control in Corn and Soybean with Group 15 (VLCFA Inhibitor) Herbicides Applied Preemergence. International Journal of Agronomy, 2019: 1–7.
Steckel L.E., DeFelice M.S., Sims B.D. (1990): Integrating reduced rates of postemergence herbicides and cultivation for broadleaf weed control in soybeans (Glycine max). Weed Science, 38: 541–545.
Šmilauer P., Lepš J. (2014): Multivariate Analysis of Ecological Data Using. Canoco 5. Cambridge, Cambridge University Press.
Šuk J., Jursík M., Suchanová M., Schusterová D., Hamouzová K. (2018): Dynamics of herbicide degradation in cauliflower. Plant Soil and Environment, 64: 551–556.
ter Braak C.J.F., Šmilauer P. (2012): Canoco Reference Manual and User’s Guide: Software for Ordination (version 5.0). Ithaca, Microcomputer Power.
Tomášek M. (2015): Půdy České republiky. Praha, Česká geologická služba.
Wan C.X., Leng D.X., Ma S.N., Dong Y.H. (1992): Technique for the control of weeds in plastic film mulched groundnut fields with herbicide dimethachlor. Plant Protection, 18: 50–51.
Yang X., Guschina I.A., Hurst S., Wood S., Langford M., Hawkes T., Harwood J.L. (2010): The action of herbicides on fatty acid biosynthesis and elongation in barley and cucumber. Pest Management Science, 66: 794–800.
Zhang J., Weaver S.E., Hamill A.S. (2000): Risks and Reliability of Using Herbicides at Below-Labeled Rates. Weed Technology, 14: 106–115.[0106:RAROUH]2.0.CO;2
supplementary materialdownload PDF

© 2020 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti