Effect of 5-azacytidine induced DNA demethylation on abiotic stress tolerance in Arabidopsis thaliana

https://doi.org/10.17221/94/2018-PPSCitation:Ogneva Z.V., Suprun A.R., Dubrovina A.S., Kiselev K.V. (2019): Effect of 5-azacytidine induced DNA demethylation on abiotic stress tolerance in Arabidopsis thaliana. Plant Protect. Sci., 55: 73-80.
supplementary materialdownload PDF

The effect of 5-azacytidine (5A)-induced DNA hypomethylation on the growth and abiotic stress tolerance of Arabidopsis thaliana were analysed. Growth analysis revealed that aqueous solutions of 5A added to the soil did not affect the fresh and dry biomass accumulation but led to a higher percentage of flowering A. thaliana plants after four weeks of cultivation. The 5A treatment considerably lowered survival rates of Arabidopsis plants under high soil salinity, heat stress, and drought, while it did not affect the survival rates after freezing stress. 5A eliminated the stimulatory effect of the heat and drought stresses on the transcriptional levels of a number of stress-inducible genes, such as DREB1, LEA, SOS1, or RD29A. A less clear but similar trend has been detected for the effect of 5A on expression of the stress-inducible genes under salt and cold stresses. The data indicate that DNA methylation is an important mechanism regulating plant abiotic stress resistance.

Aina Roberta, Sgorbati Sergio, Santagostino Angela, Labra Massimo, Ghiani Alessandra, Citterio Sandra (2004): Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiologia Plantarum, 121, 472-480 https://doi.org/10.1111/j.1399-3054.2004.00343.x
Al-Lawati A., Al-Bahry S., Victor R., Al-Lawati A.H., Yaish M.W. (2016): Salt stress alters DNA methylation levels in alfalfa (Medicago spp). Genetics and Molecular Research, 15, - https://doi.org/10.4238/gmr.15018299
Bartels Arthur, Han Qiang, Nair Pooja, Stacey Liam, Gaynier Hannah, Mosley Matthew, Huang Qi, Pearson Jacob, Hsieh Tzung-Fu, An Yong-Qiang, Xiao Wenyan (2018): Dynamic DNA Methylation in Plant Growth and Development. International Journal of Molecular Sciences, 19, 2144- https://doi.org/10.3390/ijms19072144
Boyko Alex, Golubov Andrey, Bilichak Andriy, Kovalchuk Igor (2010): Chlorine Ions but not Sodium Ions Alter Genome Stability of Arabidopsis thaliana. Plant and Cell Physiology, 51, 1066-1078 https://doi.org/10.1093/pcp/pcq048
Burn J. E., Bagnall D. J., Metzger J. D., Dennis E. S., Peacock W. J. (1993): DNA methylation, vernalization, and the initiation of flowering.. Proceedings of the National Academy of Sciences, 90, 287-291 https://doi.org/10.1073/pnas.90.1.287
Choi Chang-Sun, Sano Hiroshi (2007): Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Molecular Genetics and Genomics, 277, 589-600 https://doi.org/10.1007/s00438-007-0209-1
Deleris Angelique, Greenberg Maxim V C, Ausin Israel, Law Rona W Y, Moissiard Guillaume, Schubert Daniel, Jacobsen Steven E (2010): Involvement of a Jumonji-C domain-containing histone demethylase in DRM2-mediated maintenance of DNA methylation. EMBO reports, 11, 950-955 https://doi.org/10.1038/embor.2010.158
Deng Jianchuan, Kou Shuyan, Zou Qian, Li Ping, Zhang Cuiping, Yuan Pingrong (2018): DNA Methylation and Plant Stress Responses. Journal of Plant Physiology & Pathology, 06, - https://doi.org/10.4172/2329-955X.1000182
Dubrovina A. S., Kiselev K. V., Weber A. (2016): Age-associated alterations in the somatic mutation and DNA methylation levels in plants. Plant Biology, 18, 185-196 https://doi.org/10.1111/plb.12375
Dubrovina Alexandra S., Kiselev Konstantin V., Khristenko Valeriya S., Aleynova Olga A. (2017): The calcium-dependent protein kinase gene VaCPK29 is involved in grapevine responses to heat and osmotic stresses. Plant Growth Regulation, 82, 79-89 https://doi.org/10.1007/s10725-016-0240-5
Duan H.Y., Liu W.X., Li J.Y., Ding W.K., Zhu Y.Q., Wang H.N., Jiang L.N., Zhou Y.Q. (2016): Growth and DNA methylation level of Triticum aestivum seedlings treated with 5-azacytidine. Pakistan Journal of Botany, 48: 1585–1591.
Fieldes M. A. (1994): Heritable effects of 5-azacytidine treatments on the growth and development of flax ( Linum usitatissimum ) genotrophs and genotypes. Genome, 37, 1-11 https://doi.org/10.1139/g94-001
Gehring Mary, Henikoff Steven (2007): DNA methylation dynamics in plant genomes. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1769, 276-286 https://doi.org/10.1016/j.bbaexp.2007.01.009
Griffin Patrick T., Niederhuth Chad E., Schmitz Robert J. (2016): A Comparative Analysis of 5-Azacytidine- and Zebularine-Induced DNA Demethylation. G3: Genes|Genomes|Genetics, 6, 2773-2780 https://doi.org/10.1534/g3.116.030262
House M.A. (2010): Molecular studies of 5-azacytidine-induced early-flowering lines of flax. [MSc Dissertation.] Canada, Wilfrid Laurier University. Available at https://scholars.wlu.ca/etd/966, MSD-966
Hua Shuang, Qi Bao, Fu Yong-Ping, Li Yu (2017): DNA Methylation Changes in Pleurotus eryngii Subsp. tuoliensis (Bailinggu) in Response to Low Temperature Stress. International Journal of Agriculture and Biology, 19, 328-334 https://doi.org/10.17957/IJAB/15.0286
Kanchanaketu T., Hongtrakul V. (2015): Treatment of 5-azacytidine as DNA demethylating agent in Jatropha curcas L. Kasetsart Journal (Nat Sc.), 49: 524–535.
Karan Ratna, DeLeon Teresa, Biradar Hanamareddy, Subudhi Prasanta K., Wu Keqiang (2012): Salt Stress Induced Variation in DNA Methylation Pattern and Its Influence on Gene Expression in Contrasting Rice Genotypes. PLoS ONE, 7, e40203- https://doi.org/10.1371/journal.pone.0040203
Kiselev K. V., Shumakova O. A., Manyakhin A. Y., Mazeika A. N. (2012): Influence of calcium influx induced by the calcium ionophore, A23187, on resveratrol content and the expression of CDPK and STS genes in the cell cultures of Vitis amurensis. Plant Growth Regulation, 68, 371-381 https://doi.org/10.1007/s10725-012-9725-z
Kiselev K. V., Tyunin A. P., Ogneva Z. V., Dubrovina A. S. (2015): Age-associated alterations in the somatic mutation level in Arabidopsis thaliana. Plant Growth Regulation, 75, 493-501 https://doi.org/10.1007/s10725-014-0012-z
Kiselev Konstantin V., Aleynova Olga A., Grigorchuk Valeria P., Dubrovina Alexandra S. (2017): Stilbene accumulation and expression of stilbene biosynthesis pathway genes in wild grapevine Vitis amurensis Rupr.. Planta, 245, 151-159 https://doi.org/10.1007/s00425-016-2598-z
Labra Massimo, Grassi Fabrizio, Imazio Serena, Di Fabio Tiziana, Citterio Sandra, Sgorbati Sergio, Agradi Elisabetta (2004): Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L.. Chemosphere, 54, 1049-1058 https://doi.org/10.1016/j.chemosphere.2003.10.024
Li S. F., Zhang G. J., Yuan J. H., Deng C. L., Lu L. D., Gao W. J. (2015): Effect of 5-azaC on the growth, flowering time and sexual phenotype of spinach. Russian Journal of Plant Physiology, 62, 670-675 https://doi.org/10.1134/S1021443715050118
Livak Kenneth J., Schmittgen Thomas D. (2001): Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25, 402-408 https://doi.org/10.1006/meth.2001.1262
Ogneva Z. V., Dubrovina A. S., Kiselev K. V. (2016): Age-associated alterations in DNA methylation and expression of methyltransferase and demethylase genes in Arabidopsis thaliana. Biologia Plantarum, 60, 628-634 https://doi.org/10.1007/s10535-016-0638-y
Omidvar Vahid, Fellner Martin, Wang Wei (2015): DNA Methylation and Transcriptomic Changes in Response to Different Lights and Stresses in 7B-1 Male-Sterile Tomato. PLOS ONE, 10, e0121864- https://doi.org/10.1371/journal.pone.0121864
Sade Nir, del Mar Rubio-Wilhelmi María, Umnajkitikorn Kamolchanok, Blumwald Eduardo (2018): Stress-induced senescence and plant tolerance to abiotic stress. Journal of Experimental Botany, 69, 845-853 https://doi.org/10.1093/jxb/erx235
Shan Xiaohui, Wang Xiaoyu, Yang Guang, Wu Ying, Su Shengzhong, Li Shipeng, Liu Hongkui, Yuan Yaping (2013): Analysis of the DNA methylation of maize (Zea mays L.) in response to cold stress based on methylation-sensitive amplified polymorphisms. Journal of Plant Biology, 56, 32-38 https://doi.org/10.1007/s12374-012-0251-3
Steward Nicolas, Ito Mikako, Yamaguchi Yube, Koizumi Nozomu, Sano Hiroshi (2002): Periodic DNA Methylation in Maize Nucleosomes and Demethylation by Environmental Stress. Journal of Biological Chemistry, 277, 37741-37746 https://doi.org/10.1074/jbc.M204050200
Tyunin A. P., Ageenko N. V., Kiselev K. V. (2016): Effects of 5-azacytidine-induced DNA demethylation on polyketide synthase gene expression in larvae of sea urchin Strongylocentrotus intermedius. Biotechnology Letters, 38, 2035-2041 https://doi.org/10.1007/s10529-016-2191-3
Vanyushin Boris F., Ashapkin Vasili V. (2011): DNA methylation in higher plants: Past, present and future. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1809, 360-368 https://doi.org/10.1016/j.bbagrm.2011.04.006
ZHANG X., JACOBSEN S.E. (2006): Genetic Analyses of DNA Methyltransferases in Arabidopsis thaliana. Cold Spring Harbor Symposia on Quantitative Biology, 71, 439-447 https://doi.org/10.1101/sqb.2006.71.047
Zhong L., Xu Y. H., Wang J. B. (2010): The effect of 5-azacytidine on wheat seedlings responses to NaCl stress. Biologia Plantarum, 54, 753-756 https://doi.org/10.1007/s10535-010-0135-7
supplementary materialdownload PDF

© 2019 Czech Academy of Agricultural Sciences