Biological control of Sclerotinia sclerotiorum (Lib.) de Bary, the causal agent of white mould disease in red cabbage, by some bacteria

https://doi.org/10.17221/96/2015-PPSCitation:Tozlu E., Mohammadi P., Senol Kotan M., Nadaroglu H., Kotan R. (2016): Biological control of Sclerotinia sclerotiorum (Lib.) de Bary, the causal agent of white mould disease in red cabbage, by some bacteria. Plant Protect. Sci., 52: 188-198.
download PDF
Sclerotinia sclerotiorum (Lib.) de Bary is the causal agent of white mould, stem, and fruit rot diseases on a wide variety of crop plants including cabbage (Brassica oleracea L.) in field and storage. Control of this pathogen by using commercial disease management methods is extremely difficult. Therefore, this study was performed to develop an alternative and effective control method for the diseases by using biocontrol bacteria – Bacillus subtilis (strains TV-6F, TV-17C, TV-12H, BA-140 and EK-7), Bacillus megaterium (strains TV-103B), and Bacillus pumilus (strains RK-103) on Petri plate assays and on red cabbage in pot assays. On Petri plates, all of the tested bacterial strains showed the zone of inhibition against the pathogen fungus ranging 15.00–26.50 mm. Their percentage inhibition rates and lesion length ranged 42.64–79.41% and 0.02–4.50 cm in pot assays, respectively. Consequently, our results indicated that especially B. subtilis strains TV-17C, TV-12H, and TV-6F can be used as bio control agent of S. sclerotiorum in red cabbage production.
References:
A. Abdalla Saifeldeen, A. A. Algam Soad, A. Ibrahim Elshiekh, M. El Naim Ahmed (2014): In Vitro Screening of Bacillus Isolates for Biological Control of Early Blight Disease of Tomato in Shambat Soil. World Journal of Agricultural Research, 2, 47-50  https://doi.org/10.12691/wjar-2-2-3
 
Abdullah Mansour T., Ali Nida Y., Suleman Patrice (2008): Biological control of Sclerotinia sclerotiorum (Lib.) de Bary with Trichoderma harzianum and Bacillus amyloliquefaciens. Crop Protection, 27, 1354-1359  https://doi.org/10.1016/j.cropro.2008.05.007
 
Aebi H. (1984): Catalase in vitro assay methods. Method of Enzymology, 105: 121–126.
 
Avdiushko S.A., Ye X.S., Kuc J. (1993): Detection of several enzymatic activities in leaf prints of cucumber plants. Physiological and Molecular Plant Pathology, 42, 441-454  https://doi.org/10.1006/pmpp.1993.1033
 
Bastas K.K., Kotan R., Ekici O., Karacif E., Cetin S., Karagoz K., Dadasoglu F. (2012): Management of common blight disease caused by Xanthomonas axonopodis pv. phaseoli by using the plant growth-promoting rhizobacteria (PGPR) and some plant extracts. HortScience, 17: 9.
 
Bartnicki-Garcia S (1968): Cell Wall Chemistry, Morphogenesis, and Taxonomy of Fungi. Annual Review of Microbiology, 22, 87-108  https://doi.org/10.1146/annurev.mi.22.100168.000511
 
Berg Gabriele, Krechel Annette, Ditz Michaela, Sikora Richard A., Ulrich Andreas, Hallmann Johannes (2005): Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiology Ecology, 51, 215-229  https://doi.org/10.1016/j.femsec.2004.08.006
 
Boland G.J. (1997): Stability Analysis for Evaluating the Influence of Environment on Chemical and Biological Control of White Mold (Sclerotinia sclerotiorum) of Bean. Biological Control, 9, 7-14  https://doi.org/10.1006/bcon.1997.0515
 
Boland G.J., Hall R. (1994): Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 16, 93-108  https://doi.org/10.1080/07060669409500766
 
CHEN CHUNQUAN, BÉLANGER RICHARD R., BENHAMOU NICOLE, PAULITZ TIMOTHY C. (2000): Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiological and Molecular Plant Pathology, 56, 13-23  https://doi.org/10.1006/pmpp.1999.0243
 
Clarke RG, Porter IJ, Woodroofe M (1993): Effect of Sowing Date on the Incidence of Sclerotinia Stem Rot Caused by Sclerotinia Minor and Yield of a Long- and a Short-Season Sunflower Cultivar.. Australasian Plant Pathology, 22, 8-  https://doi.org/10.1071/APP9930008
 
Cook R.J., Baker K.F. (1983): Why biology control? In: The Nature and Practice of Biology Control of Plant Pathogens. St. Paul, APS: 1–28.
 
Ekinci M., Turan M., Yildirim E., Güneş A., Kotan R., Dursun A. (2014): Effect of plant growth promotıng rhızobacterıa on growth, nutrıent, organıc acıd, amıno acıd and hormone content of caulıflower (Brassica oleracea L. var. botrytis) transplants. Acta Scientiarum Polonorum. Hortorum Cultus, 13 (6): 71–85.
 
Erman M., Kotan R., Çakmakçı R., Çığ F., Karagöz F., Sezen M. (2010): Effect of nitrogen fixing and phosphate-solubilizing rhizobacteria isolated from van lake basin on the growth and quality properties in wheat and sugar beet. In: Turkey 4th Organic Agriculture Symposium, June 28–July 1, 2010, Erzurum, Turkey: 325–329.
 
Eşiyok D. (2012): Winter and Summer Vegetable Growing. İzmir, Meta Publisher. (In Turkish)
 
Expert J. M., Digat B. (1995): Biocontrol of Sclerotinia wilt of sunflower by Pseudomonas fluorescens and Pseudomonas putida strains. Canadian Journal of Microbiology, 41, 685-691  https://doi.org/10.1139/m95-094
 
Fernando W.G.D., Nakkeeran S., Zhang Y. (2004): Ecofriendly methods in combating Sclerotinia sclerotiorum (Lib.) de Bary. Recent Res. Devel. Environ. Biol., 1: 329–347.
 
Fernando W.G.D., Nakkeeran S., Zhang Y., Savchuk S. (2007): Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Protection, 26, 100-107  https://doi.org/10.1016/j.cropro.2006.04.007
 
Godoy G., Steadman J.R., Yuen G. (1990): Bean blossom bacteria have potential for biological control of white mould disease caused by Sclerotinia sclerotiorum. Annual Review of the Bean Improvement Cooperative, 33: 45–46.
 
Gomes R. C., Semedo L. T. A. S., Soares R. M. A., Alviano C. S., and L. F. Linhares, Coelho R. R. R. (2000): Chitinolytic activity of actinomycetes from a cerrado soil and their potential in biocontrol. Letters in Applied Microbiology, 30, 146-150  https://doi.org/10.1046/j.1472-765x.2000.00687.x
 
Gomes R.C., Semedo L.T.A.S., Soares R.M.A., Linhares L.F., Ulhoa C.J., Alviano C.S., Coelho R.R.R. (2001): Purification of a thermostable endochitinase from Streptomyces RC1071 isolated from a cerrado soil and its antagonism against phytopathogenic fungi. Journal of Applied Microbiology, 90, 653-661  https://doi.org/10.1046/j.1365-2672.2001.01294.x
 
Gunes Adem, Karagoz Kenan, Turan Metin, Kotan Recep, Yildirim Ertan, Cakmakci Ramazan, Sahin Fikrettin (2015): Fertilizer Efficiency of Some Plant Growth Promoting Rhizobacteria for Plant Growth. Research Journal of Soil Biology, 7, 28-45  https://doi.org/10.3923/rjsb.2015.28.45
 
Hannusch D. (1996): Influence of Air Temperature and Relative Humidity on Biological Control of White Mold of Bean ( Sclerotinia sclerotiorum ). Phytopathology, 86, 156-  https://doi.org/10.1094/Phyto-86-156
 
Hasenekoğlu İ. (1991): Soil Microfungi. Yayınları, Atatürk Univercity Press. No. 689, Kazım Karabekir Eğitim Fakültesi Yayınları, 11: 1–7. (in Turkish)
 
Hedke K., Lut P., von Tiedemann A. (1999): Contans – first biocontrol agent against Sclerotinia sclerotiorum in oilseed rape. In: 10th International Rapeseed Congress, Sept 26–29, 2001, Canberra, Australia.
 
Heydari Asghar, Pessarakli Mohammad (2010): A Review on Biological Control of Fungal Plant Pathogens Using Microbial Antagonists. Journal of Biological Sciences, 10, 273-290  https://doi.org/10.3923/jbs.2010.273.290
 
Hoitink H A J, Fahy P C (1986): Basis for the Control of Soilborne Plant Pathogens with Composts. Annual Review of Phytopathology, 24, 93-114  https://doi.org/10.1146/annurev.py.24.090186.000521
 
Holmes B., Costas M., Ganner M., On M., Stevens S.L. (1994): Evaluation of biolog system for identification of some gram negative bacteria of clinical importance. Journal of Clinical Microbiology, 32: 1970–1975.
 
Huang H., Erickson RS. (2007): Biological control of Sclerotinia stem rot of canola using Ulocladium atrum. Plant Pathology Bulletin, 16: 55–59.
 
Huang H.C, Bremer E, Hynes R.K, Erickson R.S (2000): Foliar Application of Fungal Biocontrol Agents for the Control of White Mold of Dry Bean Caused by Sclerotinia sclerotiorum. Biological Control, 18, 270-276  https://doi.org/10.1006/bcon.2000.0829
 
Janda Tibor, Szalai Gabriella, Rios-Gonzalez Krisztina, Veisz Ottó, Páldi Emil (2003): Comparative study of frost tolerance and antioxidant activity in cereals. Plant Science, 164, 301-306  https://doi.org/10.1016/S0168-9452(02)00414-4
 
Klement Z., Farkas G.L., Lovrekovich L. (1964): Hypersensitive reaction induced by phytopathogenic bacteria in the tobacco leaf. Phytopathology, 54: 474–477.
 
Kotan R., Sahin F., Ala A. (2005): Identification and pathogenicity of bacteria isolated from pome fruits trees in eastern Anatolia region of Turkey. Journal of Plant Diseases and Protection, 113: 8–13.
 
Recep Kotan, Fikrettin Sahin, Erkol Demirci, Cafer Eken (2009): Biological control of the potato dry rot caused by Fusarium species using PGPR strains. Biological Control, 50, 194-198  https://doi.org/10.1016/j.biocontrol.2009.04.004
 
Kotan R., Mohammadi P., Karagöz K., Dadaşoğlu F., Güneş A., Tozlu E. (2014): Determination of broad spectrum bacterial strains which can be used as bio-pesticides and bio-fertilizers in agriculture. In: Vth Turkey Plant Protection Congress, Feb 3–5, 2014, Antalya, Turkey: 313.
 
Krutova N.P. (1987): Mycoparasites of sclerotia of causal agent of sunflower white rot. Mikologiya i fitopatologiya, 21: 168–171.
 
Leite Monik Evelin, dos Santos João Bosco, Ribeiro Pedro Martins, de Souza Danuza Araujo, de Castro Lara Letícia Aparecida, de Resende Mário Lúcio Vilela (2014): Biochemical responses associated with common bean defence against Sclerotinia sclerotiorum. European Journal of Plant Pathology, 138, 391-404  https://doi.org/10.1007/s10658-013-0341-1
 
Liang J.G., Tao R.X., Hao1 Z., Wang LP., Zhang X. (2011): Induction of resistance in cucumber against seedling damping-off by plant growth-promoting rhizobacteria (PGPR) Bacillus megaterium strain L8. African Journal of Biotechnology, 10: 6920–6927.
 
Lyth P., Schulz R.R., Pfeffer H. (1993): The influence of bacterial antagonists on the infestation a soil as well as on the yield of winter oilseed rape affected by Sclerotinia sclerotiorum. Zentralblatt für Microbiologie, 148: 32–38.
 
Mari M., Guizzardi M., Pratella G.C. (1996): Biological Control of Gray Mold in Pears by Antagonistic Bacteria. Biological Control, 7, 30-37  https://doi.org/10.1006/bcon.1996.0060
 
Masirevic S., Gulya T.J. (1992): Sclerotinia and Phomopsis — two devastating sunflower pathogens. Field Crops Research, 30, 271-300  https://doi.org/10.1016/0378-4290(92)90004-S
 
McLaren D. L. (1996): Control of Apothecial Production of Sclerotinia sclerotiorum by Coniothyrium minitans and Talaromyces flavus. Plant Disease, 80, 1373-  https://doi.org/10.1094/PD-80-1373
 
Miller L.T. (1982): Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. Journla of Clinical Microbiology, 16: 584–586.
 
Mischke Sue, Mischke C.F., Adams P.B. (1995): A rind-associated factor from sclerotia of Sclerotinia minor stimulates germination of a mycoparasite. Mycological Research, 99, 1063-1070  https://doi.org/10.1016/S0953-7562(09)80774-0
 
Nadaroglu H., Demir N. (2009): In vivo effects of chlorpyrifos and parathion methyl on some oxidative enzyme activıties in chickpea, bean, wheat, nettle and parsley leaves. Fresenius Environmental Bulletin, 18: 647–652.
 
Peberdy J.F. (1990): Fungal cell walls – a review. In: Kuhn P.J., Trinci A.P.J., Jung M.J., Goosey M.W., Copping L.G.: Biochemistry of Cell Walls and Membranes in Fungi.London, Springer-Verlag: 5–30.
 
Pieckenstain Fernando L., Bazzalo Maria E., Roberts Adrian M.I., Ugalde Rodolfo A. (2001): Epicoccum purpurascens for biocontrol of Sclerotinia head rot of sunflower. Mycological Research, 105, 77-84  https://doi.org/10.1017/S0953756200003129
 
Purdy L. H. (1979): Sclerotinia sclerotiorum : History, Diseases and Symptomatology, Host Range, Geographic Distribution, and Impact. Phytopathology, 69, 875-  https://doi.org/10.1094/Phyto-69-875
 
Raupach Georg S., Kloepper Joseph W. (1998): Mixtures of Plant Growth-Promoting Rhizobacteria Enhance Biological Control of Multiple Cucumber Pathogens. Phytopathology, 88, 1158-1164  https://doi.org/10.1094/PHYTO.1998.88.11.1158
 
Selitrennikoff C. P. (2001): Antifungal Proteins. Applied and Environmental Microbiology, 67, 2883-2894  https://doi.org/10.1128/AEM.67.7.2883-2894.2001
 
Senol Merve, Nadaroglu Hayrunnisa, Dikbas Neslihan, Kotan Recep (2014): Purification of Chitinase enzymes from Bacillus subtilis bacteria TV-125, investigation of kinetic properties and antifungal activity against Fusarium culmorum. Annals of Clinical Microbiology and Antimicrobials, 13, -  https://doi.org/10.1186/s12941-014-0035-3
 
Shi Chunhua, Dai Ya, Xu Xiaolong, Xie Yongshu, Liu Qingliang (2002): The Purification of Polyphenol Oxidase from Tobacco. Protein Expression and Purification, 24, 51-55  https://doi.org/10.1006/prep.2001.1543
 
Srivastava M., Gupta S.K., Saxena A.P., Shittu L.A.J, Gupta S.K. (2011): A review of occurrence of fungal pathogens on significant Brassicaceous vegetable crops and their control measures. Asian Journal of Agricultural Sciences 3 (2): 70–79.
 
Sun Y., Oberley L.W., Li Y.A. (1988): A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34: 497–500.
 
Tozlu E. (2003): Incidence, identification, pathogenicity and biological control of Sclerotinia sclerotiorum (Lib.) De Bary and Sclerotinia minor jagger isolates caused stem rot on sunflowers grown in pasinler plain. [PhD Thesis.] Ataturk University, Erzurum, Turkey. (in Turkish)
 
TSUJIBO Hiroshi, OKAMOTO Takashi, HATANO Naoya, MIYAMOTO Katsushiro, WATANABE Takeshi, MITSUTOMI Masaru, INAMORI Yoshihiko (2014): Family 19 Chitinases from Streptomyces thermoviolaceus OPC-520: Molecular Cloning and Characterization. Bioscience, Biotechnology, and Biochemistry, 64, 2445-2453  https://doi.org/10.1271/bbb.64.2445
 
Tu J.C. (1997): Biological control of white mould in white bean using Trichoderma viride, Gliocladium roseum and Bacillus subtilis as protective foliar spray. In: Proceedings 49th International Symposium on Crop Protection, May 6, 1997, Gent, Belgium. Part IV: 979–986.
 
TURAN Metin, EKİNCİ Melek, YILDIRIM Ertan, GÜNEŞ Adem, KARAGÖZ Kenan, KOTAN Recep, DURSUN Atilla (2014): Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 38, 327-333  https://doi.org/10.3906/tar-1308-62
 
Venette J. (1998): Sclerotinia spore formation, transport and infection. In: Proceedings Sclerotinia Workshop, Jan 21, 1998. Fargo, North Dakota, USA.
 
Yuen G.Y., Godoy G., Steadman J.R., Kerr E.D., Craig M.L. (1991): Epiphytic colonization of dry edible bean by bacteria antagonistic to Sclerotinia sclerotiorum and potential for biological control of white mold disease. Biological Control, 1, 293-301  https://doi.org/10.1016/1049-9644(91)90081-A
 
Yuen G. Y. (1994): Influences of Antagonist Population Levels, Blossom Development Stage, and Canopy Temperature on the Inhibition of Sclerotinia sclerotiorum on Dry Edible Bean by Erwinia herbicola. Phytopathology, 84, 495-  https://doi.org/10.1094/Phyto-84-495
 
Zazzerini A., Tosi L., Rossi S. (1987): Antagonistic effect of Bacillus spp. on Sclerotinia sclerotiorum sclerotia. Phytopathologia Mediterranea, 26: 185–187.
 
Zhang Y. (2004): Biocontrol of Sclerotinia stem rot of canola by bacterial antagonists and study of biocontrol mechanisms involved. [Master Thesis. ] Winnipeg, University of Manitoba.
 
Zhang Y.-H., Goa H.-L., Ma G.-Z., Li S.-D. (2004): Mycoparasitism of Gliocladium roseum 67-1 on Sclerotinia sclerotiorum. Acta Phytopathologica Sinica, 34: 211–214.
 
download PDF

© 2021 Czech Academy of Agricultural Sciences | Prohlášení o přístupnosti