Inhibitory effect of the glucosinolate–myrosinase system on Phytophthora cinnamomi and Pythium spiculum Cordero F.T., Rodríguez-Arcos R., Jiménez-Araujo A., Guillén-Bejarano R., Basallote M.J., Barrau C. (2019): Inhibitory effect of the glucosinolate–myrosinase system on Phytophthora cinnamomi and Pythium spiculum. Plant Protect. Sci., 55: 93-101.
download PDF

Glucosinolate extracts from sprouts of common Brassica nigra, B. juncea cv. Scala, B. carinata cv. Eleven, and Sinapis alba cv. Ludique were analysed by reversed phase high-performance liquid chromatography-diode array detection-mass spectrometry. The effect of the glucosinolate–myrosinase system on in vitro mycelial growth of Phytophthora cinnamomi Rands and Pythium spiculum B. Paul was assessed. Likewise, sinigrin and sinalbin monohydrate commercial standards were also tested. The extracts from B. carinata, which contained 159 mmol/g plant DW equivalent (85% sinigrin, 5% gluconapin, and 3% glucotropaeolin), were the most effective against Phytophthora and Pythium isolates used in this study. However, the extract from S. alba, which contained 1 180 mmol/g (100% sinalbin), did not inhibit the mycelial growth of the isolates tested. The use of the glucosinolate-myrosinase system provides important additional information to advance in the implementation of field application of brassicaceous amendments for the control of soil-borne pathogens.

Angus J. F., Gardner P. A., Kirkegaard J. A., Desmarchelier J. M. (1994): Biofumigation: Isothiocyanates released frombrassica roots inhibit growth of the take-all fungus. Plant and Soil, 162, 107-112
Barrau C., Porras M., Romero E., Zurera C., Ramos N., Soares C., Neto E., Marreiros A., Entrudo J., Romero F. (2009): Brassica carinata for control of Phytophthora spp. in strawberry field crops. Revista de Ciências Agrárias, 32: 135–138.
BRASIER C. M., ROBREDO F., FERRAZ J. F. P. (1993): Evidence for Phytophthora cinnamomi involvement in Iberian oak decline. Plant Pathology, 42, 140-145
Brown P. D., Morra M. J. (1996): Hydrolysis products of glucosinolates in Brassica napus tissues as inhibitors of seed germination. Plant and Soil, 181, 307-316
Chan M. K. Y., Close R. C. (2012): Aphanomyces root rot of peas 3. Control by the use of cruciferous amendments. New Zealand Journal of Agricultural Research, 30, 225-233
Vita P. De, Serrano M. S., Ramo C., Aponte C., García L. V., Belbahri L., Sánchez M. E. (2013): First Report of Root Rot Caused by Pythium spiculum Affecting Cork Oaks at Doñana Biological Reserve in Spain. Plant Disease, 97, 991-991
Fabre Nicolas, Poinsot Véréna, Debrauwer Laurent, Vigor Claire, Tulliez Jacques, Fourasté Isabelle, Moulis Claude (2007): Characterisation of glucosinolates using electrospray ion trap and electrospray quadrupole time-of-flight mass spectrometry. Phytochemical Analysis, 18, 306-319
Kirkegaard J.A., Sarwar M. (1998): Biofumigation potential of brassicas I. Variation in glucosinolates profile of diverse field grown brassicas. Plant and Soil, 201: 71–89.
Kliebenstein Dan J, Kroymann Juergen, Mitchell-Olds Thomas (2005): The glucosinolate–myrosinase system in an ecological and evolutionary context. Current Opinion in Plant Biology, 8, 264-271
Kumar S., Andy A. (2012): Minireview: Health promoting bioactive phytochemicals from Brassica. International Food Research Journal 19: 141–152.
Kurt Şener, Güneş Ufuk, Soylu Emine M (2011): In vitro and in vivo antifungal activity of synthetic pure isothiocyanates against Sclerotinia sclerotiorum. Pest Management Science, 67, 869-875
Lazzeri L., Tacconi R., Palmieri S. (1993): In vitro activity of some glucosinolates and their reaction products toward a population of the nematode Heterodera schachtii. Journal of Agricultural and Food Chemistry, 41, 825-829
Lazzeri Luca, Manici Luisa M. (2001): Allelopathic Effect of Glucosinolate-containing Plant Green Manure on Pythium sp. and Total Fungal Population in Soil. HortScience, 36, 1283-1289
Lazzeri Luca, Curto Giovanna, Leoni Onofrio, Dallavalle Elisabetta (2004): Effects of Glucosinolates and Their Enzymatic Hydrolysis Products via Myrosinase on the Root-knot Nematode Meloidogyne incognita (Kofoid et White) Chitw.. Journal of Agricultural and Food Chemistry, 52, 6703-6707
Leoni O., Iori R., Esposito E., Menegatti E., Cortesi R., Nastruzzi C. (1997): Myrosinase-generated isothiocyanates from glucosinolates: Isolatiom, characterization and in vitro antiproliferative studies. Bioorganic & Medicinal Chemistry, 5: 1799–1806.
Lowe S.J., Browne M., Boudjelas S. (2000): 100 of the World’s worst invasive alien species. Auckland, New Zealand: IUCN/SSC Invasive Species Specialist Group. Acceced at
Malabed R.S, Noel M.G., Aton III B.C., Toribio E.AF. (2014): Characterization of the glucosinolates and isothiocyanates in mustard (Brassica juncea L.) extracts and determination of its myrosinase activity and antioxidant capacity. DLSU Research Congress 2014, Vol. 2, Series 1: 1–7 (FNH-I-003).
Manici Luisa M., Lazzeri Luca, Palmieri Sandro (1997): In Vitro Fungitoxic Activity of Some Glucosinolates and Their Enzyme-Derived Products toward Plant Pathogenic Fungi. Journal of Agricultural and Food Chemistry, 45, 2768-2773
Manyes L., Luciano F.B., Mañes J., Meca G. (2015): In vitro antifungal activity of allyl isothiocyanate (AITC) against Aspergillus parasiticus and Penicillium expansum and evaluation of the AITC estimated daily intake. Food and Chemical Toxicology, 83, 293-299
Mari M., Leoni O., Bernardi R., Neri F., Palmieri S. (2008): Control of brown rot on stonefruit by synthetic and glucosinolate-derived isothiocyanates. Postharvest Biology and Technology, 47, 61-67
Martín J.C., Higuera B.L. (2016): Glucosinolate composition of Colombian accessions of mashua (Tropaeolum tuberosum Ruíz & Pavón), structural elucidation of the predominant glucosinolate and assessment of its antifungal activity. Journal of the Science of Food and Agriculture, 96: 4702–4712.
Mayton Hilary (1996): Correlation of Fungicidal Activity of Brassica Species with Allyl Isothiocyanate Production in Macerated Leaf Tissue. Phytopathology, 86, 267-
Mazzola Mark, Granatstein David M., Elfving Donald C., Mullinix Kent (2001): Suppression of Specific Apple Root Pathogens by Brassica napus Seed Meal Amendment Regardless of Glucosinolate Content. Phytopathology, 91, 673-679
Morales-Rodríguez Carmen, Picón-Toro Julia, Palo Carolina, Palo Eloy J, García Ángela, Rodríguez-Molina Carmen (2012): In vitro inhibition of mycelial growth of Phytophthora nicotianae Breda de Haan from different hosts by Brassicaceae species. Effect of the developmental stage of the biofumigant plants. Pest Management Science, 68, 1317-1322
Olivier C., Vaughn S.F., Mizubuti E.S.G., Loria R. (1999): Variation in allyl isithiocyanate production within Brassica species and correlation with fungicidal activity. Journal of Chemical Ecology. 25: 2687–2701.
Rask L., Andreasson E., Ekbom B., Eriksson S., Pontoppidan B., Meijer J. (2000): Myrosinase: gen family evolution and herbivore defense in Brassicaceae. Plant Molecular Biology. 42: 93–113.
Ríos P., Obregón S., de Haro A., Fernández P., Serrano M.S., Sánchez M.E. (2016a): Effect of Brassica biofumigant amendments on different stages of the life cycle of Phytophthora cinnamomi. Journal of Phytopathology. 164: 582–594.
Ríos P., Obregón S., González M., de Haro A., Sánchez M.E. (2016b): Screening brassicaceous plants as biofumigants for management of Phytophthora cinnamomi oak disease. Forest Pathology, 46: 652–659.
Rodríguez-Molina M.C., Santiago R., Blanco A., Pozo J.D., Colino M.I., Palo E.J., Torres L.M. (2003): Detección de Phytophthora cinnamomi en dehesas de Extremadura afectadas por “seca” y su comportamiento in vitro. Boletín Sanidad Vegetal Plagas, 29: 627–640.
SANCHEZ M. E., CAETANO P., FERRAZ J., TRAPERO A. (2002): Phytophthora disease of Quercus ilex in south-western Spain. Forest Pathology, 32, 5-18
Sarwar M., Kirkegaard J.A., Wong P.T.W., Desmarchelier J.M. (1998): Biofumigation potential of brassicas: III. In vitro toxicity of isothiocyanates to soil-borne fungal pathogens. Plant and Soil, 201: 103–112.
Serrano M.S., De Vita P., Fernández-Rebollo P., Coelho A.C., Belbahri L., Sánchez M.E. (2012). Phytophthora cinnamomi and Pythium spiculum as main agents of Quercus decline in southern Spain and Portugal. IOBC/WPRS Bulletin. 76: 97-100.
Smallegange R. C., van Loon J. J. A., Blatt S. E., Harvey J. A., Agerbirk N., Dicke M. (2007): Flower vs. Leaf Feeding by Pieris brassicae: Glucosinolate-Rich Flower Tissues are Preferred and Sustain Higher Growth Rate. Journal of Chemical Ecology, 33, 1831-1844
Smolinska U., Morra M. J., Knudsen G. R., James R. L. (2003): Isothiocyanates Produced by Brassicaceae Species as Inhibitors of Fusarium oxysporum. Plant Disease, 87, 407-412
Špak J., Kolářová L., Lewis J., Fenwick G. R. (1993): The effect of glucosinolates (mustard oil glycosides) and products of their enzymic degradation on the infectivity of turnip mosaic virus. Biologia Plantarum, 35, -
Troncoso-Rojas R, Sánchez-Estrada A, Ruelas C, García Hugo S, Tiznado-Hernández ME (2005): Effect of benzyl isothiocyanate on tomato fruit infection development byAlternaria alternata. Journal of the Science of Food and Agriculture, 85, 1427-1434
Tuset J.J., Hinarejos C., Mira J.L., Cobos J.M. (1996): Implicación de Phytophthora cinnamomi Rands en la enfermedad de la «seca» de encinas y alcornoques. Boletín Sanidad Vegetal Plagas. 22: 491–499.
Ugolini Luisa, Martini Camilla, Lazzeri Luca, D’Avino Lorenzo, Mari Marta (2014): Control of postharvest grey mould (Botrytis cinerea Per.: Fr.) on strawberries by glucosinolate-derived allyl-isothiocyanate treatments. Postharvest Biology and Technology, 90, 34-39
Utkhede R.S., Smith E.M. (1991): Phytophthora and Pythium species associated with root rot of young apple trees and their control. Soil Biology and Biochemistry, 23, 1059-1063
Wang Shiow Y., Chen Chi-Tsun, Yin Jun-Jie (2010): Effect of allyl isothiocyanate on antioxidants and fruit decay of blueberries. Food Chemistry, 120, 199-204
Wilson Adjélé Eli, Bergaentzlé Martine, Bindler Françoise, Marchioni Eric, Lintz Adrienne, Ennahar Saïd (2013): In vitro efficacies of various isothiocyanates from cruciferous vegetables as antimicrobial agents against foodborne pathogens and spoilage bacteria. Food Control, 30, 318-324
Wu H., Zhang X., Zhang G., Zeng S., Kin K. (2011): Antifungal vapour-phase activity of a combination of allyl isothiocyanate and ethyl isothiocyanate against Botrytis cinerea and Penicillium expansum infection on apples. Journal of Phytopathology, 159: 4050–4455.
Yuan Gaofeng, Wang Xiaoping, Guo Rongfang, Wang Qiaomei (2010): Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chemistry, 121, 1014-1019
download PDF

© 2019 Czech Academy of Agricultural Sciences