Identification of Phytophthora species by a high resolution melting analysis: an innovative tool for rapid differentiation

https://doi.org/10.17221/179/2015-PPSCitation:Zambounis A., Samaras A., Xanthopoulou A., Osathanunkul M., Schena L., Tsaftaris A., Madesis P. (2016): Identification of Phytophthora species by a high resolution melting analysis: an innovative tool for rapid differentiation. Plant Protect. Sci., 52: 176-181.
download PDF
A new molecular method via the high resolution melting (HRM) analysis of the Ypt1 gene non-coding regions was validated for ten Phytophthora species with a broad host range from forest trees to crop species. The melting curve analysis of the amplicons specifically grouped all species into 10 respective unique and distinct HRM curve profiles. The analysis of the normalised HRM melting curves, assigning P. nicotianae as a normalised reference genotype, revealed that the genotype similarities among all the species were adequately low, indicating that Ypt1 marker was sufficient to identify and differentiate the tested species. This HRM method is rapid and reproducible allowing the identification of Phytophthora species and the screening of eventual variants eliminating the separate steps and reducing the risk of contamination.
References:
Balci Y., Balci S., Eggers J., MacDonald W. L., Juzwik J., Long R. P., Gottschalk K. W. (2007): Phytophthora spp. Associated with Forest Soils in Eastern and North-Central U.S. Oak Ecosystems. Plant Disease, 91, 705-710  https://doi.org/10.1094/PDIS-91-6-0705
 
Brasier Clive M., Kirk Susan A., Delcan Jose, Cooke David E.L., Jung Thomas, Man In't Veld Willem A. (2004): Phytophthora alni sp. nov. and its variants: designation of emerging heteroploid hybrid pathogens spreading on Alnus trees. Mycological Research, 108, 1172-1184  https://doi.org/10.1017/S0953756204001005
 
Cahill David M., Rookes James E., Wilson Barbara A., Gibson Lesley, McDougall Keith L. (2008): TURNER REVIEW No. 17. Phytophthora cinnamomi and Australia's biodiversity: impacts, predictions and progress towards control. Australian Journal of Botany, 56, 279-  https://doi.org/10.1071/BT07159
 
Cooke D.E.L., Schena L., Cacciola S.O. (2007): Tools to detect, identify and monitor Phytophthora species in natural ecosystems. Journal of Plant Pathology, 89: 13–28.
 
Ganopoulos Ioannis, Madesis Panagiotis, Zambounis Antonios, Tsaftaris Athanasios (2012): High-resolution melting analysis allowed fast and accurate closed-tube genotyping of Fusarium oxysporum formae speciales complex. FEMS Microbiology Letters, 334, 16-21  https://doi.org/10.1111/j.1574-6968.2012.02610.x
 
Hewson Kylie, Noormohammadi Amir H., Devlin Joanne M., Mardani Karim, Ignjatovic Jagoda (2009): Rapid detection and non-subjective characterisation of infectious bronchitis virus isolates using high-resolution melt curve analysis and a mathematical model. Archives of Virology, 154, 649-660  https://doi.org/10.1007/s00705-009-0357-1
 
Ioos Renaud, Laugustin Lise, Schenck Nathalie, Rose Sylvie, Husson Claude, Frey Pascal (2006): Usefulness of single copy genes containing introns in Phytophthora for the development of detection tools for the regulated species P. ramorum and P. fragariae. European Journal of Plant Pathology, 116, 171-176  https://doi.org/10.1007/s10658-006-9051-2
 
Kroon Laurens P. N. M., Brouwer Henk, de Cock Arthur W. A. M., Govers Francine (2012): The Genus Phytophthora Anno 2012. Phytopathology, 102, 348-364  https://doi.org/10.1094/PHYTO-01-11-0025
 
Li Mingzhu, Inada Minoru, Watanabe Hideki, Suga Haruhisa, Kageyama Koji (2013): Simultaneous Detection and Quantification of Phytophthora nicotianae and P. cactorum, and Distribution Analyses in Strawberry Greenhouses by Duplex Real-time PCR. Microbes and Environments, 28, 195-203  https://doi.org/10.1264/jsme2.ME12177
 
Madesis Panagiotis, Ganopoulos Ioannis, Sakaridis Ioannis, Argiriou Anagnostis, Tsaftaris Athanasios (2014): Advances of DNA-based methods for tracing the botanical origin of food products. Food Research International, 60, 163-172  https://doi.org/10.1016/j.foodres.2013.10.042
 
Martin Frank N., Abad Z. Gloria, Balci Yilmaz, Ivors Kelly (2012): Identification and Detection of Phytophthora : Reviewing Our Progress, Identifying Our Needs. Plant Disease, 96, 1080-1103  https://doi.org/10.1094/PDIS-12-11-1036-FE
 
Meng Jun, Wang Yuanchao (2010): Rapid Detection of Phytophthora nicotianae in Infected Tobacco Tissues and Soil Samples Based on Its Ypt1 Gene. Journal of Phytopathology, 158, 1-7  https://doi.org/10.1111/j.1439-0434.2009.01548.x
 
Prigigallo M. I., Mosca S., Cacciola S. O., Cooke D. E. L., Schena L. (2015): Molecular analysis of Phytophthora diversity in nursery-grown ornamental and fruit plants. Plant Pathology, 64, 1308-1319  https://doi.org/10.1111/ppa.12362
 
Reed G. H. (2004): Sensitivity and Specificity of Single-Nucleotide Polymorphism Scanning by High-Resolution Melting Analysis. Clinical Chemistry, 50, 1748-1754  https://doi.org/10.1373/clinchem.2003.029751
 
ROBIDEAU GREGG P., De COCK ARTHUR W. A. M., COFFEY MICHAEL D., VOGLMAYR HERMANN, BROUWER HENK, BALA KANAK, CHITTY DAVID W., DÉSAULNIERS NICOLE, EGGERTSON QUINN A., GACHON CLAIRE M. M., HU CHIA-HUI, KÜPPER FRITHJOF C., RINTOUL TARA L., SARHAN EHAB, VERSTAPPEN ELS C. P., ZHANG YONGHONG, BONANTS PETER J. M., RISTAINO JEAN B., ANDRÉ LÉVESQUE C. (2011): DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Molecular Ecology Resources, 11, 1002-1011  https://doi.org/10.1111/j.1755-0998.2011.03041.x
 
Rozen S., Skaletsky H. (2000): Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology, 132: 365–386.
 
Sanzani Simona M., Li Destri Nicosia Maria G., Faedda Roberto, Cacciola Santa O., Schena Leonardo (2014): Use of Quantitative PCR Detection Methods to Study Biocontrol Agents and Phytopathogenic Fungi and Oomycetes in Environmental Samples. Journal of Phytopathology, 162, 1-13  https://doi.org/10.1111/jph.12147
 
Schena Leonardo, Cooke David E.L. (2006): Assessing the potential of regions of the nuclear and mitochondrial genome to develop a “molecular tool box” for the detection and characterization of Phytophthora species. Journal of Microbiological Methods, 67, 70-85  https://doi.org/10.1016/j.mimet.2006.03.003
 
Schena L., Duncan J.M., Cooke D.E.L. (2008): Development and application of a PCR based “molecular tool box” for the detection of Phytophthora species damaging forests and natural ecosystems. Plant Pathology, 57: 64–75.
 
Schena L., Li Destri Nicosia M.G., Sanzani S.M., Faedda R., Ippolito A., Cacciola S.O. (2013): Development of quantitative PCR detection methods for phytopathogenic fungi and oomycetes. Journal of Plant Pathology, 95: 7–24.
 
Wong M.-H., Henderson J., Drenth A. (2013): Identification and differentiation of Phyllosticta species causing freckle disease of banana using high resolution melting (HRM) analysis. Plant Pathology, 62, 1285-1293  https://doi.org/10.1111/ppa.12056
 
Zambounis Antonios, Ganopoulos Ioannis, Chatzidimopoulos Michael, Tsaftaris Athanasios, Madesis Panagiotis (2015): High-Resolution Melting approaches towards plant fungal molecular diagnostics. Phytoparasitica, 43, 265-272  https://doi.org/10.1007/s12600-014-0441-2
 
download PDF

© 2020 Czech Academy of Agricultural Sciences